File size: 9,493 Bytes
97b6013 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 |
# Copyright 2017 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Utilities for generating/preprocessing data for adversarial text models."""
import operator
import os
import random
import re
# Dependency imports
import tensorflow as tf
EOS_TOKEN = '</s>'
# Data filenames
# Sequence Autoencoder
ALL_SA = 'all_sa.tfrecords'
TRAIN_SA = 'train_sa.tfrecords'
TEST_SA = 'test_sa.tfrecords'
# Language Model
ALL_LM = 'all_lm.tfrecords'
TRAIN_LM = 'train_lm.tfrecords'
TEST_LM = 'test_lm.tfrecords'
# Classification
TRAIN_CLASS = 'train_classification.tfrecords'
TEST_CLASS = 'test_classification.tfrecords'
VALID_CLASS = 'validate_classification.tfrecords'
# LM with bidirectional LSTM
TRAIN_REV_LM = 'train_reverse_lm.tfrecords'
TEST_REV_LM = 'test_reverse_lm.tfrecords'
# Classification with bidirectional LSTM
TRAIN_BD_CLASS = 'train_bidir_classification.tfrecords'
TEST_BD_CLASS = 'test_bidir_classification.tfrecords'
VALID_BD_CLASS = 'validate_bidir_classification.tfrecords'
class ShufflingTFRecordWriter(object):
"""Thin wrapper around TFRecordWriter that shuffles records."""
def __init__(self, path):
self._path = path
self._records = []
self._closed = False
def write(self, record):
assert not self._closed
self._records.append(record)
def close(self):
assert not self._closed
random.shuffle(self._records)
with tf.python_io.TFRecordWriter(self._path) as f:
for record in self._records:
f.write(record)
self._closed = True
def __enter__(self):
return self
def __exit__(self, unused_type, unused_value, unused_traceback):
self.close()
class Timestep(object):
"""Represents a single timestep in a SequenceWrapper."""
def __init__(self, token, label, weight, multivalent_tokens=False):
"""Constructs Timestep from empty Features."""
self._token = token
self._label = label
self._weight = weight
self._multivalent_tokens = multivalent_tokens
self._fill_with_defaults()
@property
def token(self):
if self._multivalent_tokens:
raise TypeError('Timestep may contain multiple values; use `tokens`')
return self._token.int64_list.value[0]
@property
def tokens(self):
return self._token.int64_list.value
@property
def label(self):
return self._label.int64_list.value[0]
@property
def weight(self):
return self._weight.float_list.value[0]
def set_token(self, token):
if self._multivalent_tokens:
raise TypeError('Timestep may contain multiple values; use `add_token`')
self._token.int64_list.value[0] = token
return self
def add_token(self, token):
self._token.int64_list.value.append(token)
return self
def set_label(self, label):
self._label.int64_list.value[0] = label
return self
def set_weight(self, weight):
self._weight.float_list.value[0] = weight
return self
def copy_from(self, timestep):
self.set_token(timestep.token).set_label(timestep.label).set_weight(
timestep.weight)
return self
def _fill_with_defaults(self):
if not self._multivalent_tokens:
self._token.int64_list.value.append(0)
self._label.int64_list.value.append(0)
self._weight.float_list.value.append(0.0)
class SequenceWrapper(object):
"""Wrapper around tf.SequenceExample."""
F_TOKEN_ID = 'token_id'
F_LABEL = 'label'
F_WEIGHT = 'weight'
def __init__(self, multivalent_tokens=False):
self._seq = tf.train.SequenceExample()
self._flist = self._seq.feature_lists.feature_list
self._timesteps = []
self._multivalent_tokens = multivalent_tokens
@property
def seq(self):
return self._seq
@property
def multivalent_tokens(self):
return self._multivalent_tokens
@property
def _tokens(self):
return self._flist[SequenceWrapper.F_TOKEN_ID].feature
@property
def _labels(self):
return self._flist[SequenceWrapper.F_LABEL].feature
@property
def _weights(self):
return self._flist[SequenceWrapper.F_WEIGHT].feature
def add_timestep(self):
timestep = Timestep(
self._tokens.add(),
self._labels.add(),
self._weights.add(),
multivalent_tokens=self._multivalent_tokens)
self._timesteps.append(timestep)
return timestep
def __iter__(self):
for timestep in self._timesteps:
yield timestep
def __len__(self):
return len(self._timesteps)
def __getitem__(self, idx):
return self._timesteps[idx]
def build_reverse_sequence(seq):
"""Builds a sequence that is the reverse of the input sequence."""
reverse_seq = SequenceWrapper()
# Copy all but last timestep
for timestep in reversed(seq[:-1]):
reverse_seq.add_timestep().copy_from(timestep)
# Copy final timestep
reverse_seq.add_timestep().copy_from(seq[-1])
return reverse_seq
def build_bidirectional_seq(seq, rev_seq):
bidir_seq = SequenceWrapper(multivalent_tokens=True)
for forward_ts, reverse_ts in zip(seq, rev_seq):
bidir_seq.add_timestep().add_token(forward_ts.token).add_token(
reverse_ts.token)
return bidir_seq
def build_lm_sequence(seq):
"""Builds language model sequence from input sequence.
Args:
seq: SequenceWrapper.
Returns:
SequenceWrapper with `seq` tokens copied over to output sequence tokens and
labels (offset by 1, i.e. predict next token) with weights set to 1.0,
except for <eos> token.
"""
lm_seq = SequenceWrapper()
for i, timestep in enumerate(seq):
if i == len(seq) - 1:
lm_seq.add_timestep().set_token(timestep.token).set_label(
seq[i].token).set_weight(0.0)
else:
lm_seq.add_timestep().set_token(timestep.token).set_label(
seq[i + 1].token).set_weight(1.0)
return lm_seq
def build_seq_ae_sequence(seq):
"""Builds seq_ae sequence from input sequence.
Args:
seq: SequenceWrapper.
Returns:
SequenceWrapper with `seq` inputs copied and concatenated, and with labels
copied in on the right-hand (i.e. decoder) side with weights set to 1.0.
The new sequence will have length `len(seq) * 2 - 1`, as the last timestep
of the encoder section and the first step of the decoder section will
overlap.
"""
seq_ae_seq = SequenceWrapper()
for i in range(len(seq) * 2 - 1):
ts = seq_ae_seq.add_timestep()
if i < len(seq) - 1:
# Encoder
ts.set_token(seq[i].token)
elif i == len(seq) - 1:
# Transition step
ts.set_token(seq[i].token)
ts.set_label(seq[0].token)
ts.set_weight(1.0)
else:
# Decoder
ts.set_token(seq[i % len(seq)].token)
ts.set_label(seq[(i + 1) % len(seq)].token)
ts.set_weight(1.0)
return seq_ae_seq
def build_labeled_sequence(seq, class_label, label_gain=False):
"""Builds labeled sequence from input sequence.
Args:
seq: SequenceWrapper.
class_label: integer, starting from 0.
label_gain: bool. If True, class_label will be put on every timestep and
weight will increase linearly from 0 to 1.
Returns:
SequenceWrapper with `seq` copied in and `class_label` added as label to
final timestep.
"""
label_seq = SequenceWrapper(multivalent_tokens=seq.multivalent_tokens)
# Copy sequence without labels
seq_len = len(seq)
final_timestep = None
for i, timestep in enumerate(seq):
label_timestep = label_seq.add_timestep()
if seq.multivalent_tokens:
for token in timestep.tokens:
label_timestep.add_token(token)
else:
label_timestep.set_token(timestep.token)
if label_gain:
label_timestep.set_label(int(class_label))
weight = 1.0 if seq_len < 2 else float(i) / (seq_len - 1)
label_timestep.set_weight(weight)
if i == (seq_len - 1):
final_timestep = label_timestep
# Edit final timestep to have class label and weight = 1.
final_timestep.set_label(int(class_label)).set_weight(1.0)
return label_seq
def split_by_punct(segment):
"""Splits str segment by punctuation, filters our empties and spaces."""
return [s for s in re.split(r'\W+', segment) if s and not s.isspace()]
def sort_vocab_by_frequency(vocab_freq_map):
"""Sorts vocab_freq_map by count.
Args:
vocab_freq_map: dict<str term, int count>, vocabulary terms with counts.
Returns:
list<tuple<str term, int count>> sorted by count, descending.
"""
return sorted(
vocab_freq_map.items(), key=operator.itemgetter(1), reverse=True)
def write_vocab_and_frequency(ordered_vocab_freqs, output_dir):
"""Writes ordered_vocab_freqs into vocab.txt and vocab_freq.txt."""
tf.gfile.MakeDirs(output_dir)
with open(os.path.join(output_dir, 'vocab.txt'), 'w', encoding='utf-8') as vocab_f:
with open(os.path.join(output_dir, 'vocab_freq.txt'), 'w', encoding='utf-8') as freq_f:
for word, freq in ordered_vocab_freqs:
vocab_f.write('{}\n'.format(word))
freq_f.write('{}\n'.format(freq))
|