File size: 7,967 Bytes
97b6013 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
# Copyright 2017 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Create TFRecord files of SequenceExample protos from dataset.
Constructs 3 datasets:
1. Labeled data for the LSTM classification model, optionally with label gain.
"*_classification.tfrecords" (for both unidirectional and bidirectional
models).
2. Data for the unsupervised LM-LSTM model that predicts the next token.
"*_lm.tfrecords" (generates forward and reverse data).
3. Data for the unsupervised SA-LSTM model that uses Seq2Seq.
"*_sa.tfrecords".
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import string
# Dependency imports
import tensorflow as tf
from data import data_utils
from data import document_generators
data = data_utils
flags = tf.app.flags
FLAGS = flags.FLAGS
# Flags for input data are in document_generators.py
flags.DEFINE_string('vocab_file', '', 'Path to the vocabulary file. Defaults '
'to FLAGS.output_dir/vocab.txt.')
flags.DEFINE_string('output_dir', '', 'Path to save tfrecords.')
# Config
flags.DEFINE_boolean('label_gain', False,
'Enable linear label gain. If True, sentiment label will '
'be included at each timestep with linear weight '
'increase.')
def build_shuffling_tf_record_writer(fname):
return data.ShufflingTFRecordWriter(os.path.join(FLAGS.output_dir, fname))
def build_tf_record_writer(fname):
return tf.python_io.TFRecordWriter(os.path.join(FLAGS.output_dir, fname))
def build_input_sequence(doc, vocab_ids):
"""Builds input sequence from file.
Splits lines on whitespace. Treats punctuation as whitespace. For word-level
sequences, only keeps terms that are in the vocab.
Terms are added as token in the SequenceExample. The EOS_TOKEN is also
appended. Label and weight features are set to 0.
Args:
doc: Document (defined in `document_generators`) from which to build the
sequence.
vocab_ids: dict<term, id>.
Returns:
SequenceExampleWrapper.
"""
seq = data.SequenceWrapper()
for token in document_generators.tokens(doc):
if token in vocab_ids:
seq.add_timestep().set_token(vocab_ids[token])
# Add EOS token to end
seq.add_timestep().set_token(vocab_ids[data.EOS_TOKEN])
return seq
def make_vocab_ids(vocab_filename):
if FLAGS.output_char:
ret = dict([(char, i) for i, char in enumerate(string.printable)])
ret[data.EOS_TOKEN] = len(string.printable)
return ret
else:
with open(vocab_filename, encoding='utf-8') as vocab_f:
return dict([(line.strip(), i) for i, line in enumerate(vocab_f)])
def generate_training_data(vocab_ids, writer_lm_all, writer_seq_ae_all):
"""Generates training data."""
# Construct training data writers
writer_lm = build_shuffling_tf_record_writer(data.TRAIN_LM)
writer_seq_ae = build_shuffling_tf_record_writer(data.TRAIN_SA)
writer_class = build_shuffling_tf_record_writer(data.TRAIN_CLASS)
writer_valid_class = build_tf_record_writer(data.VALID_CLASS)
writer_rev_lm = build_shuffling_tf_record_writer(data.TRAIN_REV_LM)
writer_bd_class = build_shuffling_tf_record_writer(data.TRAIN_BD_CLASS)
writer_bd_valid_class = build_shuffling_tf_record_writer(data.VALID_BD_CLASS)
for doc in document_generators.documents(
dataset='train', include_unlabeled=True, include_validation=True):
input_seq = build_input_sequence(doc, vocab_ids)
if len(input_seq) < 2:
continue
rev_seq = data.build_reverse_sequence(input_seq)
lm_seq = data.build_lm_sequence(input_seq)
rev_lm_seq = data.build_lm_sequence(rev_seq)
seq_ae_seq = data.build_seq_ae_sequence(input_seq)
if doc.label is not None:
# Used for sentiment classification.
label_seq = data.build_labeled_sequence(
input_seq,
doc.label,
label_gain=(FLAGS.label_gain and not doc.is_validation))
bd_label_seq = data.build_labeled_sequence(
data.build_bidirectional_seq(input_seq, rev_seq),
doc.label,
label_gain=(FLAGS.label_gain and not doc.is_validation))
class_writer = writer_valid_class if doc.is_validation else writer_class
bd_class_writer = (writer_bd_valid_class
if doc.is_validation else writer_bd_class)
class_writer.write(label_seq.seq.SerializeToString())
bd_class_writer.write(bd_label_seq.seq.SerializeToString())
# Write
lm_seq_ser = lm_seq.seq.SerializeToString()
seq_ae_seq_ser = seq_ae_seq.seq.SerializeToString()
writer_lm_all.write(lm_seq_ser)
writer_seq_ae_all.write(seq_ae_seq_ser)
if not doc.is_validation:
writer_lm.write(lm_seq_ser)
writer_rev_lm.write(rev_lm_seq.seq.SerializeToString())
writer_seq_ae.write(seq_ae_seq_ser)
# Close writers
writer_lm.close()
writer_seq_ae.close()
writer_class.close()
writer_valid_class.close()
writer_rev_lm.close()
writer_bd_class.close()
writer_bd_valid_class.close()
def generate_test_data(vocab_ids, writer_lm_all, writer_seq_ae_all):
"""Generates test data."""
# Construct test data writers
writer_lm = build_shuffling_tf_record_writer(data.TEST_LM)
writer_rev_lm = build_shuffling_tf_record_writer(data.TEST_REV_LM)
writer_seq_ae = build_shuffling_tf_record_writer(data.TEST_SA)
writer_class = build_tf_record_writer(data.TEST_CLASS)
writer_bd_class = build_shuffling_tf_record_writer(data.TEST_BD_CLASS)
for doc in document_generators.documents(
dataset='test', include_unlabeled=False, include_validation=True):
input_seq = build_input_sequence(doc, vocab_ids)
if len(input_seq) < 2:
continue
rev_seq = data.build_reverse_sequence(input_seq)
lm_seq = data.build_lm_sequence(input_seq)
rev_lm_seq = data.build_lm_sequence(rev_seq)
seq_ae_seq = data.build_seq_ae_sequence(input_seq)
label_seq = data.build_labeled_sequence(input_seq, doc.label)
bd_label_seq = data.build_labeled_sequence(
data.build_bidirectional_seq(input_seq, rev_seq), doc.label)
# Write
writer_class.write(label_seq.seq.SerializeToString())
writer_bd_class.write(bd_label_seq.seq.SerializeToString())
lm_seq_ser = lm_seq.seq.SerializeToString()
seq_ae_seq_ser = seq_ae_seq.seq.SerializeToString()
writer_lm.write(lm_seq_ser)
writer_rev_lm.write(rev_lm_seq.seq.SerializeToString())
writer_seq_ae.write(seq_ae_seq_ser)
writer_lm_all.write(lm_seq_ser)
writer_seq_ae_all.write(seq_ae_seq_ser)
# Close test writers
writer_lm.close()
writer_rev_lm.close()
writer_seq_ae.close()
writer_class.close()
writer_bd_class.close()
def main(_):
tf.logging.set_verbosity(tf.logging.INFO)
tf.logging.info('Assigning vocabulary ids...')
vocab_ids = make_vocab_ids(
FLAGS.vocab_file or os.path.join(FLAGS.output_dir, 'vocab.txt'))
with build_shuffling_tf_record_writer(data.ALL_LM) as writer_lm_all:
with build_shuffling_tf_record_writer(data.ALL_SA) as writer_seq_ae_all:
tf.logging.info('Generating training data...')
generate_training_data(vocab_ids, writer_lm_all, writer_seq_ae_all)
tf.logging.info('Generating test data...')
generate_test_data(vocab_ids, writer_lm_all, writer_seq_ae_all)
if __name__ == '__main__':
tf.app.run()
|