File size: 24,710 Bytes
97b6013 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 |
# Copyright 2017 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Virtual adversarial text models."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import csv
import os
# Dependency imports
import tensorflow as tf
import adversarial_losses as adv_lib
import inputs as inputs_lib
import layers as layers_lib
flags = tf.app.flags
FLAGS = flags.FLAGS
# Flags governing adversarial training are defined in adversarial_losses.py.
# Classifier
flags.DEFINE_integer('num_classes', 2, 'Number of classes for classification')
# Data path
flags.DEFINE_string('data_dir', '/tmp/IMDB',
'Directory path to preprocessed text dataset.')
flags.DEFINE_string('vocab_freq_path', None,
'Path to pre-calculated vocab frequency data. If '
'None, use FLAGS.data_dir/vocab_freq.txt.')
flags.DEFINE_integer('batch_size', 64, 'Size of the batch.')
flags.DEFINE_integer('num_timesteps', 100, 'Number of timesteps for BPTT')
# Model architechture
flags.DEFINE_bool('bidir_lstm', False, 'Whether to build a bidirectional LSTM.')
flags.DEFINE_bool('single_label', True, 'Whether the sequence has a single '
'label, for optimization.')
flags.DEFINE_integer('rnn_num_layers', 1, 'Number of LSTM layers.')
flags.DEFINE_integer('rnn_cell_size', 512,
'Number of hidden units in the LSTM.')
flags.DEFINE_integer('cl_num_layers', 1,
'Number of hidden layers of classification model.')
flags.DEFINE_integer('cl_hidden_size', 30,
'Number of hidden units in classification layer.')
flags.DEFINE_integer('num_candidate_samples', -1,
'Num samples used in the sampled output layer.')
flags.DEFINE_bool('use_seq2seq_autoencoder', False,
'If True, seq2seq auto-encoder is used to pretrain. '
'If False, standard language model is used.')
# Vocabulary and embeddings
flags.DEFINE_integer('embedding_dims', 256, 'Dimensions of embedded vector.')
flags.DEFINE_integer('vocab_size', 86934,
'The size of the vocaburary. This value '
'should be exactly same as the number of the '
'vocabulary used in dataset. Because the last '
'indexed vocabulary of the dataset preprocessed by '
'my preprocessed code, is always <eos> and here we '
'specify the <eos> with the the index.')
flags.DEFINE_bool('normalize_embeddings', True,
'Normalize word embeddings by vocab frequency')
# Optimization
flags.DEFINE_float('learning_rate', 0.001, 'Learning rate while fine-tuning.')
flags.DEFINE_float('learning_rate_decay_factor', 1.0,
'Learning rate decay factor')
flags.DEFINE_boolean('sync_replicas', False, 'sync_replica or not')
flags.DEFINE_integer('replicas_to_aggregate', 1,
'The number of replicas to aggregate')
# Regularization
flags.DEFINE_float('max_grad_norm', 1.0,
'Clip the global gradient norm to this value.')
flags.DEFINE_float('keep_prob_emb', 1.0, 'keep probability on embedding layer. '
'0.5 is optimal on IMDB with virtual adversarial training.')
flags.DEFINE_float('keep_prob_lstm_out', 1.0,
'keep probability on lstm output.')
flags.DEFINE_float('keep_prob_cl_hidden', 1.0,
'keep probability on classification hidden layer')
def get_model():
if FLAGS.bidir_lstm:
return VatxtBidirModel()
else:
return VatxtModel()
class VatxtModel(object):
"""Constructs training and evaluation graphs.
Main methods: `classifier_training()`, `language_model_training()`,
and `eval_graph()`.
Variable reuse is a critical part of the model, both for sharing variables
between the language model and the classifier, and for reusing variables for
the adversarial loss calculation. To ensure correct variable reuse, all
variables are created in Keras-style layers, wherein stateful layers (i.e.
layers with variables) are represented as callable instances of the Layer
class. Each time the Layer instance is called, it is using the same variables.
All Layers are constructed in the __init__ method and reused in the various
graph-building functions.
"""
def __init__(self, cl_logits_input_dim=None):
self.global_step = tf.train.get_or_create_global_step()
self.vocab_freqs = _get_vocab_freqs()
# Cache VatxtInput objects
self.cl_inputs = None
self.lm_inputs = None
# Cache intermediate Tensors that are reused
self.tensors = {}
# Construct layers which are reused in constructing the LM and
# Classification graphs. Instantiating them all once here ensures that
# variable reuse works correctly.
self.layers = {}
self.layers['embedding'] = layers_lib.Embedding(
FLAGS.vocab_size, FLAGS.embedding_dims, FLAGS.normalize_embeddings,
self.vocab_freqs, FLAGS.keep_prob_emb)
self.layers['lstm'] = layers_lib.LSTM(
FLAGS.rnn_cell_size, FLAGS.rnn_num_layers, FLAGS.keep_prob_lstm_out)
self.layers['lm_loss'] = layers_lib.SoftmaxLoss(
FLAGS.vocab_size,
FLAGS.num_candidate_samples,
self.vocab_freqs,
name='LM_loss')
cl_logits_input_dim = cl_logits_input_dim or FLAGS.rnn_cell_size
self.layers['cl_logits'] = layers_lib.cl_logits_subgraph(
[FLAGS.cl_hidden_size] * FLAGS.cl_num_layers, cl_logits_input_dim,
FLAGS.num_classes, FLAGS.keep_prob_cl_hidden)
@property
def pretrained_variables(self):
return (self.layers['embedding'].trainable_weights +
self.layers['lstm'].trainable_weights)
def classifier_training(self):
loss = self.classifier_graph()
train_op = optimize(loss, self.global_step)
return train_op, loss, self.global_step
def language_model_training(self):
loss = self.language_model_graph()
train_op = optimize(loss, self.global_step)
return train_op, loss, self.global_step
def classifier_graph(self):
"""Constructs classifier graph from inputs to classifier loss.
* Caches the VatxtInput object in `self.cl_inputs`
* Caches tensors: `cl_embedded`, `cl_logits`, `cl_loss`
Returns:
loss: scalar float.
"""
inputs = _inputs('train', pretrain=False)
self.cl_inputs = inputs
embedded = self.layers['embedding'](inputs.tokens)
self.tensors['cl_embedded'] = embedded
_, next_state, logits, loss = self.cl_loss_from_embedding(
embedded, return_intermediates=True)
tf.summary.scalar('classification_loss', loss)
self.tensors['cl_logits'] = logits
self.tensors['cl_loss'] = loss
if FLAGS.single_label:
indices = tf.stack([tf.range(FLAGS.batch_size), inputs.length - 1], 1)
labels = tf.expand_dims(tf.gather_nd(inputs.labels, indices), 1)
weights = tf.expand_dims(tf.gather_nd(inputs.weights, indices), 1)
else:
labels = inputs.labels
weights = inputs.weights
acc = layers_lib.accuracy(logits, labels, weights)
tf.summary.scalar('accuracy', acc)
adv_loss = (self.adversarial_loss() * tf.constant(
FLAGS.adv_reg_coeff, name='adv_reg_coeff'))
tf.summary.scalar('adversarial_loss', adv_loss)
total_loss = loss + adv_loss
with tf.control_dependencies([inputs.save_state(next_state)]):
total_loss = tf.identity(total_loss)
tf.summary.scalar('total_classification_loss', total_loss)
return total_loss
def language_model_graph(self, compute_loss=True):
"""Constructs LM graph from inputs to LM loss.
* Caches the VatxtInput object in `self.lm_inputs`
* Caches tensors: `lm_embedded`
Args:
compute_loss: bool, whether to compute and return the loss or stop after
the LSTM computation.
Returns:
loss: scalar float.
"""
inputs = _inputs('train', pretrain=True)
self.lm_inputs = inputs
return self._lm_loss(inputs, compute_loss=compute_loss)
def _lm_loss(self,
inputs,
emb_key='lm_embedded',
lstm_layer='lstm',
lm_loss_layer='lm_loss',
loss_name='lm_loss',
compute_loss=True):
embedded = self.layers['embedding'](inputs.tokens)
self.tensors[emb_key] = embedded
lstm_out, next_state = self.layers[lstm_layer](embedded, inputs.state,
inputs.length)
if compute_loss:
loss = self.layers[lm_loss_layer](
[lstm_out, inputs.labels, inputs.weights])
with tf.control_dependencies([inputs.save_state(next_state)]):
loss = tf.identity(loss)
tf.summary.scalar(loss_name, loss)
return loss
def eval_graph(self, dataset='test'):
"""Constructs classifier evaluation graph.
Args:
dataset: the labeled dataset to evaluate, {'train', 'test', 'valid'}.
Returns:
eval_ops: dict<metric name, tuple(value, update_op)>
var_restore_dict: dict mapping variable restoration names to variables.
Trainable variables will be mapped to their moving average names.
"""
inputs = _inputs(dataset, pretrain=False)
embedded = self.layers['embedding'](inputs.tokens)
_, next_state, logits, _ = self.cl_loss_from_embedding(
embedded, inputs=inputs, return_intermediates=True)
if FLAGS.single_label:
indices = tf.stack([tf.range(FLAGS.batch_size), inputs.length - 1], 1)
labels = tf.expand_dims(tf.gather_nd(inputs.labels, indices), 1)
weights = tf.expand_dims(tf.gather_nd(inputs.weights, indices), 1)
else:
labels = inputs.labels
weights = inputs.weights
eval_ops = {
'accuracy':
tf.contrib.metrics.streaming_accuracy(
layers_lib.predictions(logits), labels, weights)
}
with tf.control_dependencies([inputs.save_state(next_state)]):
acc, acc_update = eval_ops['accuracy']
acc_update = tf.identity(acc_update)
eval_ops['accuracy'] = (acc, acc_update)
var_restore_dict = make_restore_average_vars_dict()
return eval_ops, var_restore_dict
def cl_loss_from_embedding(self,
embedded,
inputs=None,
return_intermediates=False):
"""Compute classification loss from embedding.
Args:
embedded: 3-D float Tensor [batch_size, num_timesteps, embedding_dim]
inputs: VatxtInput, defaults to self.cl_inputs.
return_intermediates: bool, whether to return intermediate tensors or only
the final loss.
Returns:
If return_intermediates is True:
lstm_out, next_state, logits, loss
Else:
loss
"""
if inputs is None:
inputs = self.cl_inputs
lstm_out, next_state = self.layers['lstm'](embedded, inputs.state,
inputs.length)
if FLAGS.single_label:
indices = tf.stack([tf.range(FLAGS.batch_size), inputs.length - 1], 1)
lstm_out = tf.expand_dims(tf.gather_nd(lstm_out, indices), 1)
labels = tf.expand_dims(tf.gather_nd(inputs.labels, indices), 1)
weights = tf.expand_dims(tf.gather_nd(inputs.weights, indices), 1)
else:
labels = inputs.labels
weights = inputs.weights
logits = self.layers['cl_logits'](lstm_out)
loss = layers_lib.classification_loss(logits, labels, weights)
if return_intermediates:
return lstm_out, next_state, logits, loss
else:
return loss
def adversarial_loss(self):
"""Compute adversarial loss based on FLAGS.adv_training_method."""
def random_perturbation_loss():
return adv_lib.random_perturbation_loss(self.tensors['cl_embedded'],
self.cl_inputs.length,
self.cl_loss_from_embedding)
def adversarial_loss():
return adv_lib.adversarial_loss(self.tensors['cl_embedded'],
self.tensors['cl_loss'],
self.cl_loss_from_embedding)
def virtual_adversarial_loss():
"""Computes virtual adversarial loss.
Uses lm_inputs and constructs the language model graph if it hasn't yet
been constructed.
Also ensures that the LM input states are saved for LSTM state-saving
BPTT.
Returns:
loss: float scalar.
"""
if self.lm_inputs is None:
self.language_model_graph(compute_loss=False)
def logits_from_embedding(embedded, return_next_state=False):
_, next_state, logits, _ = self.cl_loss_from_embedding(
embedded, inputs=self.lm_inputs, return_intermediates=True)
if return_next_state:
return next_state, logits
else:
return logits
next_state, lm_cl_logits = logits_from_embedding(
self.tensors['lm_embedded'], return_next_state=True)
va_loss = adv_lib.virtual_adversarial_loss(
lm_cl_logits, self.tensors['lm_embedded'], self.lm_inputs,
logits_from_embedding)
with tf.control_dependencies([self.lm_inputs.save_state(next_state)]):
va_loss = tf.identity(va_loss)
return va_loss
def combo_loss():
return adversarial_loss() + virtual_adversarial_loss()
adv_training_methods = {
# Random perturbation
'rp': random_perturbation_loss,
# Adversarial training
'at': adversarial_loss,
# Virtual adversarial training
'vat': virtual_adversarial_loss,
# Both at and vat
'atvat': combo_loss,
'': lambda: tf.constant(0.),
None: lambda: tf.constant(0.),
}
with tf.name_scope('adversarial_loss'):
return adv_training_methods[FLAGS.adv_training_method]()
class VatxtBidirModel(VatxtModel):
"""Extension of VatxtModel that supports bidirectional input."""
def __init__(self):
super(VatxtBidirModel,
self).__init__(cl_logits_input_dim=FLAGS.rnn_cell_size * 2)
# Reverse LSTM and LM loss for bidirectional models
self.layers['lstm_reverse'] = layers_lib.LSTM(
FLAGS.rnn_cell_size,
FLAGS.rnn_num_layers,
FLAGS.keep_prob_lstm_out,
name='LSTM_Reverse')
self.layers['lm_loss_reverse'] = layers_lib.SoftmaxLoss(
FLAGS.vocab_size,
FLAGS.num_candidate_samples,
self.vocab_freqs,
name='LM_loss_reverse')
@property
def pretrained_variables(self):
variables = super(VatxtBidirModel, self).pretrained_variables
variables.extend(self.layers['lstm_reverse'].trainable_weights)
return variables
def classifier_graph(self):
"""Constructs classifier graph from inputs to classifier loss.
* Caches the VatxtInput objects in `self.cl_inputs`
* Caches tensors: `cl_embedded` (tuple of forward and reverse), `cl_logits`,
`cl_loss`
Returns:
loss: scalar float.
"""
inputs = _inputs('train', pretrain=False, bidir=True)
self.cl_inputs = inputs
f_inputs, _ = inputs
# Embed both forward and reverse with a shared embedding
embedded = [self.layers['embedding'](inp.tokens) for inp in inputs]
self.tensors['cl_embedded'] = embedded
_, next_states, logits, loss = self.cl_loss_from_embedding(
embedded, return_intermediates=True)
tf.summary.scalar('classification_loss', loss)
self.tensors['cl_logits'] = logits
self.tensors['cl_loss'] = loss
acc = layers_lib.accuracy(logits, f_inputs.labels, f_inputs.weights)
tf.summary.scalar('accuracy', acc)
adv_loss = (self.adversarial_loss() * tf.constant(
FLAGS.adv_reg_coeff, name='adv_reg_coeff'))
tf.summary.scalar('adversarial_loss', adv_loss)
total_loss = loss + adv_loss
saves = [inp.save_state(state) for (inp, state) in zip(inputs, next_states)]
with tf.control_dependencies(saves):
total_loss = tf.identity(total_loss)
tf.summary.scalar('total_classification_loss', total_loss)
return total_loss
def language_model_graph(self, compute_loss=True):
"""Constructs forward and reverse LM graphs from inputs to LM losses.
* Caches the VatxtInput objects in `self.lm_inputs`
* Caches tensors: `lm_embedded`, `lm_embedded_reverse`
Args:
compute_loss: bool, whether to compute and return the loss or stop after
the LSTM computation.
Returns:
loss: scalar float, sum of forward and reverse losses.
"""
inputs = _inputs('train', pretrain=True, bidir=True)
self.lm_inputs = inputs
f_inputs, r_inputs = inputs
f_loss = self._lm_loss(f_inputs, compute_loss=compute_loss)
r_loss = self._lm_loss(
r_inputs,
emb_key='lm_embedded_reverse',
lstm_layer='lstm_reverse',
lm_loss_layer='lm_loss_reverse',
loss_name='lm_loss_reverse',
compute_loss=compute_loss)
if compute_loss:
return f_loss + r_loss
def eval_graph(self, dataset='test'):
"""Constructs classifier evaluation graph.
Args:
dataset: the labeled dataset to evaluate, {'train', 'test', 'valid'}.
Returns:
eval_ops: dict<metric name, tuple(value, update_op)>
var_restore_dict: dict mapping variable restoration names to variables.
Trainable variables will be mapped to their moving average names.
"""
inputs = _inputs(dataset, pretrain=False, bidir=True)
embedded = [self.layers['embedding'](inp.tokens) for inp in inputs]
_, next_states, logits, _ = self.cl_loss_from_embedding(
embedded, inputs=inputs, return_intermediates=True)
f_inputs, _ = inputs
eval_ops = {
'accuracy':
tf.contrib.metrics.streaming_accuracy(
layers_lib.predictions(logits), f_inputs.labels,
f_inputs.weights)
}
# Save states on accuracy update
saves = [inp.save_state(state) for (inp, state) in zip(inputs, next_states)]
with tf.control_dependencies(saves):
acc, acc_update = eval_ops['accuracy']
acc_update = tf.identity(acc_update)
eval_ops['accuracy'] = (acc, acc_update)
var_restore_dict = make_restore_average_vars_dict()
return eval_ops, var_restore_dict
def cl_loss_from_embedding(self,
embedded,
inputs=None,
return_intermediates=False):
"""Compute classification loss from embedding.
Args:
embedded: Length 2 tuple of 3-D float Tensor
[batch_size, num_timesteps, embedding_dim].
inputs: Length 2 tuple of VatxtInput, defaults to self.cl_inputs.
return_intermediates: bool, whether to return intermediate tensors or only
the final loss.
Returns:
If return_intermediates is True:
lstm_out, next_states, logits, loss
Else:
loss
"""
if inputs is None:
inputs = self.cl_inputs
out = []
for (layer_name, emb, inp) in zip(['lstm', 'lstm_reverse'], embedded,
inputs):
out.append(self.layers[layer_name](emb, inp.state, inp.length))
lstm_outs, next_states = zip(*out)
# Concatenate output of forward and reverse LSTMs
lstm_out = tf.concat(lstm_outs, 1)
logits = self.layers['cl_logits'](lstm_out)
f_inputs, _ = inputs # pylint: disable=unpacking-non-sequence
loss = layers_lib.classification_loss(logits, f_inputs.labels,
f_inputs.weights)
if return_intermediates:
return lstm_out, next_states, logits, loss
else:
return loss
def adversarial_loss(self):
"""Compute adversarial loss based on FLAGS.adv_training_method."""
def random_perturbation_loss():
return adv_lib.random_perturbation_loss_bidir(self.tensors['cl_embedded'],
self.cl_inputs[0].length,
self.cl_loss_from_embedding)
def adversarial_loss():
return adv_lib.adversarial_loss_bidir(self.tensors['cl_embedded'],
self.tensors['cl_loss'],
self.cl_loss_from_embedding)
def virtual_adversarial_loss():
"""Computes virtual adversarial loss.
Uses lm_inputs and constructs the language model graph if it hasn't yet
been constructed.
Also ensures that the LM input states are saved for LSTM state-saving
BPTT.
Returns:
loss: float scalar.
"""
if self.lm_inputs is None:
self.language_model_graph(compute_loss=False)
def logits_from_embedding(embedded, return_next_state=False):
_, next_states, logits, _ = self.cl_loss_from_embedding(
embedded, inputs=self.lm_inputs, return_intermediates=True)
if return_next_state:
return next_states, logits
else:
return logits
lm_embedded = (self.tensors['lm_embedded'],
self.tensors['lm_embedded_reverse'])
next_states, lm_cl_logits = logits_from_embedding(
lm_embedded, return_next_state=True)
va_loss = adv_lib.virtual_adversarial_loss_bidir(
lm_cl_logits, lm_embedded, self.lm_inputs, logits_from_embedding)
saves = [
inp.save_state(state)
for (inp, state) in zip(self.lm_inputs, next_states)
]
with tf.control_dependencies(saves):
va_loss = tf.identity(va_loss)
return va_loss
def combo_loss():
return adversarial_loss() + virtual_adversarial_loss()
adv_training_methods = {
# Random perturbation
'rp': random_perturbation_loss,
# Adversarial training
'at': adversarial_loss,
# Virtual adversarial training
'vat': virtual_adversarial_loss,
# Both at and vat
'atvat': combo_loss,
'': lambda: tf.constant(0.),
None: lambda: tf.constant(0.),
}
with tf.name_scope('adversarial_loss'):
return adv_training_methods[FLAGS.adv_training_method]()
def _inputs(dataset='train', pretrain=False, bidir=False):
return inputs_lib.inputs(
data_dir=FLAGS.data_dir,
phase=dataset,
bidir=bidir,
pretrain=pretrain,
use_seq2seq=pretrain and FLAGS.use_seq2seq_autoencoder,
state_size=FLAGS.rnn_cell_size,
num_layers=FLAGS.rnn_num_layers,
batch_size=FLAGS.batch_size,
unroll_steps=FLAGS.num_timesteps,
eos_id=FLAGS.vocab_size - 1)
def _get_vocab_freqs():
"""Returns vocab frequencies.
Returns:
List of integers, length=FLAGS.vocab_size.
Raises:
ValueError: if the length of the frequency file is not equal to the vocab
size, or if the file is not found.
"""
path = FLAGS.vocab_freq_path or os.path.join(FLAGS.data_dir, 'vocab_freq.txt')
if tf.gfile.Exists(path):
with tf.gfile.Open(path) as f:
# Get pre-calculated frequencies of words.
reader = csv.reader(f, quoting=csv.QUOTE_NONE)
freqs = [int(row[-1]) for row in reader]
if len(freqs) != FLAGS.vocab_size:
raise ValueError('Frequency file length %d != vocab size %d' %
(len(freqs), FLAGS.vocab_size))
else:
if FLAGS.vocab_freq_path:
raise ValueError('vocab_freq_path not found')
freqs = [1] * FLAGS.vocab_size
return freqs
def make_restore_average_vars_dict():
"""Returns dict mapping moving average names to variables."""
var_restore_dict = {}
variable_averages = tf.train.ExponentialMovingAverage(0.999)
for v in tf.global_variables():
if v in tf.trainable_variables():
name = variable_averages.average_name(v)
else:
name = v.op.name
var_restore_dict[name] = v
return var_restore_dict
def optimize(loss, global_step):
return layers_lib.optimize(
loss, global_step, FLAGS.max_grad_norm, FLAGS.learning_rate,
FLAGS.learning_rate_decay_factor, FLAGS.sync_replicas,
FLAGS.replicas_to_aggregate, FLAGS.task)
|