File size: 7,391 Bytes
97b6013
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
# Copyright 2017 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

"""Functions to read, decode and pre-process input data for the Model.
"""
import collections
import functools
import tensorflow as tf
from tensorflow.contrib import slim

import inception_preprocessing

# Tuple to store input data endpoints for the Model.
# It has following fields (tensors):
#    images: input images,
#      shape [batch_size x H x W x 3];
#    labels: ground truth label ids,
#      shape=[batch_size x seq_length];
#    labels_one_hot: labels in one-hot encoding,
#      shape [batch_size x seq_length x num_char_classes];
InputEndpoints = collections.namedtuple(
    'InputEndpoints', ['images', 'images_orig', 'labels', 'labels_one_hot'])

# A namedtuple to define a configuration for shuffled batch fetching.
#   num_batching_threads: A number of parallel threads to fetch data.
#   queue_capacity: a max number of elements in the batch shuffling queue.
#   min_after_dequeue: a min number elements in the queue after a dequeue, used
#     to ensure a level of mixing of elements.
ShuffleBatchConfig = collections.namedtuple('ShuffleBatchConfig', [
    'num_batching_threads', 'queue_capacity', 'min_after_dequeue'
])

DEFAULT_SHUFFLE_CONFIG = ShuffleBatchConfig(
    num_batching_threads=8, queue_capacity=3000, min_after_dequeue=1000)


def augment_image(image):
  """Augmentation the image with a random modification.

  Args:
    image: input Tensor image of rank 3, with the last dimension
           of size 3.

  Returns:
    Distorted Tensor image of the same shape.
  """
  with tf.variable_scope('AugmentImage'):
    height = image.get_shape().dims[0].value
    width = image.get_shape().dims[1].value

    # Random crop cut from the street sign image, resized to the same size.
    # Assures that the crop is covers at least 0.8 area of the input image.
    bbox_begin, bbox_size, _ = tf.image.sample_distorted_bounding_box(
        tf.shape(image),
        bounding_boxes=tf.zeros([0, 0, 4]),
        min_object_covered=0.8,
        aspect_ratio_range=[0.8, 1.2],
        area_range=[0.8, 1.0],
        use_image_if_no_bounding_boxes=True)
    distorted_image = tf.slice(image, bbox_begin, bbox_size)

    # Randomly chooses one of the 4 interpolation methods
    distorted_image = inception_preprocessing.apply_with_random_selector(
        distorted_image,
        lambda x, method: tf.image.resize_images(x, [height, width], method),
        num_cases=4)
    distorted_image.set_shape([height, width, 3])

    # Color distortion
    distorted_image = inception_preprocessing.apply_with_random_selector(
        distorted_image,
        functools.partial(
            inception_preprocessing.distort_color, fast_mode=False),
        num_cases=4)
    distorted_image = tf.clip_by_value(distorted_image, -1.5, 1.5)

  return distorted_image


def central_crop(image, crop_size):
  """Returns a central crop for the specified size of an image.

  Args:
    image: A tensor with shape [height, width, channels]
    crop_size: A tuple (crop_width, crop_height)

  Returns:
    A tensor of shape [crop_height, crop_width, channels].
  """
  with tf.variable_scope('CentralCrop'):
    target_width, target_height = crop_size
    image_height, image_width = tf.shape(image)[0], tf.shape(image)[1]
    assert_op1 = tf.Assert(
        tf.greater_equal(image_height, target_height),
        ['image_height < target_height', image_height, target_height])
    assert_op2 = tf.Assert(
        tf.greater_equal(image_width, target_width),
        ['image_width < target_width', image_width, target_width])
    with tf.control_dependencies([assert_op1, assert_op2]):
      offset_width = tf.cast((image_width - target_width) / 2, tf.int32)
      offset_height = tf.cast((image_height - target_height) / 2, tf.int32)
      return tf.image.crop_to_bounding_box(image, offset_height, offset_width,
                                           target_height, target_width)


def preprocess_image(image, augment=False, central_crop_size=None,
                     num_towers=4):
  """Normalizes image to have values in a narrow range around zero.

  Args:
    image: a [H x W x 3] uint8 tensor.
    augment: optional, if True do random image distortion.
    central_crop_size: A tuple (crop_width, crop_height).
    num_towers: optional, number of shots of the same image in the input image.

  Returns:
    A float32 tensor of shape [H x W x 3] with RGB values in the required
    range.
  """
  with tf.variable_scope('PreprocessImage'):
    image = tf.image.convert_image_dtype(image, dtype=tf.float32)
    if augment or central_crop_size:
      if num_towers == 1:
        images = [image]
      else:
        images = tf.split(value=image, num_or_size_splits=num_towers, axis=1)
      if central_crop_size:
        view_crop_size = (int(central_crop_size[0] / num_towers),
                          central_crop_size[1])
        images = [central_crop(img, view_crop_size) for img in images]
      if augment:
        images = [augment_image(img) for img in images]
      image = tf.concat(images, 1)

    image = tf.subtract(image, 0.5)
    image = tf.multiply(image, 2.5)

  return image


def get_data(dataset,
             batch_size,
             augment=False,
             central_crop_size=None,
             shuffle_config=None,
             shuffle=True):
  """Wraps calls to DatasetDataProviders and shuffle_batch.

  For more details about supported Dataset objects refer to datasets/fsns.py.

  Args:
    dataset: a slim.data.dataset.Dataset object.
    batch_size: number of samples per batch.
    augment: optional, if True does random image distortion.
    central_crop_size: A CharLogittuple (crop_width, crop_height).
    shuffle_config: A namedtuple ShuffleBatchConfig.
    shuffle: if True use data shuffling.

  Returns:

  """
  if not shuffle_config:
    shuffle_config = DEFAULT_SHUFFLE_CONFIG

  provider = slim.dataset_data_provider.DatasetDataProvider(
      dataset,
      shuffle=shuffle,
      common_queue_capacity=2 * batch_size,
      common_queue_min=batch_size)
  image_orig, label = provider.get(['image', 'label'])

  image = preprocess_image(
      image_orig, augment, central_crop_size, num_towers=dataset.num_of_views)
  label_one_hot = slim.one_hot_encoding(label, dataset.num_char_classes)

  images, images_orig, labels, labels_one_hot = (tf.train.shuffle_batch(
      [image, image_orig, label, label_one_hot],
      batch_size=batch_size,
      num_threads=shuffle_config.num_batching_threads,
      capacity=shuffle_config.queue_capacity,
      min_after_dequeue=shuffle_config.min_after_dequeue))

  return InputEndpoints(
      images=images,
      images_orig=images_orig,
      labels=labels,
      labels_one_hot=labels_one_hot)