File size: 5,431 Bytes
97b6013
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
# Copyright 2019 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

"""Core model definition of YAMNet."""

import csv

import numpy as np
import tensorflow as tf
from tensorflow.keras import Model, layers

import features as features_lib
import params


def _batch_norm(name):
  def _bn_layer(layer_input):
    return layers.BatchNormalization(
      name=name,
      center=params.BATCHNORM_CENTER,
      scale=params.BATCHNORM_SCALE,
      epsilon=params.BATCHNORM_EPSILON)(layer_input)
  return _bn_layer


def _conv(name, kernel, stride, filters):
  def _conv_layer(layer_input):
    output = layers.Conv2D(name='{}/conv'.format(name),
                           filters=filters,
                           kernel_size=kernel,
                           strides=stride,
                           padding=params.CONV_PADDING,
                           use_bias=False,
                           activation=None)(layer_input)
    output = _batch_norm(name='{}/conv/bn'.format(name))(output)
    output = layers.ReLU(name='{}/relu'.format(name))(output)
    return output
  return _conv_layer


def _separable_conv(name, kernel, stride, filters):
  def _separable_conv_layer(layer_input):
    output = layers.DepthwiseConv2D(name='{}/depthwise_conv'.format(name),
                                    kernel_size=kernel,
                                    strides=stride,
                                    depth_multiplier=1,
                                    padding=params.CONV_PADDING,
                                    use_bias=False,
                                    activation=None)(layer_input)
    output = _batch_norm(name='{}/depthwise_conv/bn'.format(name))(output)
    output = layers.ReLU(name='{}/depthwise_conv/relu'.format(name))(output)
    output = layers.Conv2D(name='{}/pointwise_conv'.format(name),
                           filters=filters,
                           kernel_size=(1, 1),
                           strides=1,
                           padding=params.CONV_PADDING,
                           use_bias=False,
                           activation=None)(output)
    output = _batch_norm(name='{}/pointwise_conv/bn'.format(name))(output)
    output = layers.ReLU(name='{}/pointwise_conv/relu'.format(name))(output)
    return output
  return _separable_conv_layer


_YAMNET_LAYER_DEFS = [
    # (layer_function, kernel, stride, num_filters)
    (_conv,          [3, 3], 2,   32),
    (_separable_conv, [3, 3], 1,   64),
    (_separable_conv, [3, 3], 2,  128),
    (_separable_conv, [3, 3], 1,  128),
    (_separable_conv, [3, 3], 2,  256),
    (_separable_conv, [3, 3], 1,  256),
    (_separable_conv, [3, 3], 2,  512),
    (_separable_conv, [3, 3], 1,  512),
    (_separable_conv, [3, 3], 1,  512),
    (_separable_conv, [3, 3], 1,  512),
    (_separable_conv, [3, 3], 1,  512),
    (_separable_conv, [3, 3], 1,  512),
    (_separable_conv, [3, 3], 2, 1024),
    (_separable_conv, [3, 3], 1, 1024)
]


def yamnet(features):
  """Define the core YAMNet mode in Keras."""
  net = layers.Reshape(
    (params.PATCH_FRAMES, params.PATCH_BANDS, 1),
    input_shape=(params.PATCH_FRAMES, params.PATCH_BANDS))(features)
  for (i, (layer_fun, kernel, stride, filters)) in enumerate(_YAMNET_LAYER_DEFS):
    net = layer_fun('layer{}'.format(i + 1), kernel, stride, filters)(net)
  net = layers.GlobalAveragePooling2D()(net)
  logits = layers.Dense(units=params.NUM_CLASSES, use_bias=True)(net)
  predictions = layers.Activation(
    name=params.EXAMPLE_PREDICTIONS_LAYER_NAME,
    activation=params.CLASSIFIER_ACTIVATION)(logits)
  return predictions


def yamnet_frames_model(feature_params):
  """Defines the YAMNet waveform-to-class-scores model.

  Args:
    feature_params: An object with parameter fields to control the feature
    calculation.

  Returns:
    A model accepting (1, num_samples) waveform input and emitting a
    (num_patches, num_classes) matrix of class scores per time frame as
    well as a (num_spectrogram_frames, num_mel_bins) spectrogram feature
    matrix.
  """
  waveform = layers.Input(batch_shape=(1, None))
  # Store the intermediate spectrogram features to use in visualization.
  spectrogram = features_lib.waveform_to_log_mel_spectrogram(
    tf.squeeze(waveform, axis=0), feature_params)
  patches = features_lib.spectrogram_to_patches(spectrogram, feature_params)
  predictions = yamnet(patches)
  frames_model = Model(name='yamnet_frames', 
                       inputs=waveform, outputs=[predictions, spectrogram])
  return frames_model


def class_names(class_map_csv):
  """Read the class name definition file and return a list of strings."""
  with open(class_map_csv) as csv_file:
    reader = csv.reader(csv_file)
    next(reader)   # Skip header
    return np.array([display_name for (_, _, display_name) in reader])