File size: 4,471 Bytes
97b6013
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

"""Tests for common.rollout."""

import numpy as np
import tensorflow as tf

from common import rollout as rollout_lib  # brain coder


class RolloutTest(tf.test.TestCase):

  def MakeRollout(self, states, actions, rewards, values=None, terminated=True):
    rollout = rollout_lib.Rollout()
    rollout.add_many(
        states=states, actions=actions, rewards=rewards, values=values,
        terminated=terminated)
    return rollout

  def testDiscount(self):
    discounted = np.array([1.0 / 2 ** n for n in range(4, -1, -1)])
    discounted[:2] += [1.0 / 2 ** n for n in range(1, -1, -1)]

    self.assertTrue(np.array_equal(
        rollout_lib.discount([0.0, 1.0, 0.0, 0.0, 1.0], 0.50),
        discounted))
    self.assertTrue(np.array_equal(
        rollout_lib.discount(np.array([0.0, 1.0, 0.0, 0.0, 1.0]), 0.50),
        discounted))

  def testDiscountedAdvantageAndRewards(self):
    # lambda=1, No bootstrapping.
    values = [0.1, 0.5, 0.5, 0.25]
    (empirical_values,
     generalized_advantage) = rollout_lib.discounted_advantage_and_rewards(
         [0.0, 0.0, 0.0, 1.0],
         values,
         gamma=0.75,
         lambda_=1.0)
    expected_discounted_r = (
        np.array([1.0 * 0.75 ** n for n in range(3, -1, -1)]))
    expected_adv = expected_discounted_r - values
    self.assertTrue(np.array_equal(empirical_values, expected_discounted_r))
    self.assertTrue(np.allclose(generalized_advantage, expected_adv))

    # lambda=1, With bootstrapping.
    values = [0.1, 0.5, 0.5, 0.25, 0.75]
    (empirical_values,
     generalized_advantage) = rollout_lib.discounted_advantage_and_rewards(
         [0.0, 0.0, 0.0, 1.0],
         values,
         gamma=0.75,
         lambda_=1.0)
    expected_discounted_r = (
        np.array([0.75 * 0.75 ** n for n in range(4, 0, -1)])
        + np.array([1.0 * 0.75 ** n for n in range(3, -1, -1)]))
    expected_adv = expected_discounted_r - values[:-1]
    self.assertTrue(np.array_equal(empirical_values, expected_discounted_r))
    self.assertTrue(np.allclose(generalized_advantage, expected_adv))

    # lambda=0.5, With bootstrapping.
    values = [0.1, 0.5, 0.5, 0.25, 0.75]
    rewards = [0.0, 0.0, 0.0, 1.0]
    l = 0.5  # lambda
    g = 0.75  # gamma
    (empirical_values,
     generalized_advantage) = rollout_lib.discounted_advantage_and_rewards(
         rewards,
         values,
         gamma=g,
         lambda_=l)
    expected_discounted_r = (
        np.array([0.75 * g ** n for n in range(4, 0, -1)])
        + np.array([1.0 * g ** n for n in range(3, -1, -1)]))
    expected_adv = [0.0] * len(values)
    for t in range(3, -1, -1):
      delta_t = rewards[t] + g * values[t + 1] - values[t]
      expected_adv[t] = delta_t + g * l * expected_adv[t + 1]
    expected_adv = expected_adv[:-1]
    self.assertTrue(np.array_equal(empirical_values, expected_discounted_r))
    self.assertTrue(np.allclose(generalized_advantage, expected_adv))

  def testProcessRollouts(self):
    g = 0.95
    rollouts = [
        self.MakeRollout(
            states=[3, 6, 9],
            actions=[1, 2, 3],
            rewards=[1.0, -1.0, 0.5],
            values=[0.5, 0.5, 0.1]),
        self.MakeRollout(
            states=[10],
            actions=[5],
            rewards=[1.0],
            values=[0.5])]
    batch = rollout_lib.process_rollouts(rollouts, gamma=g)

    self.assertEqual(2, batch.batch_size)
    self.assertEqual(3, batch.max_time)
    self.assertEqual([3, 1], batch.episode_lengths)
    self.assertEqual([0.5, 1.0], batch.total_rewards)
    self.assertEqual(
        [[3, 6, 9], [10, 0, 0]],
        batch.states.tolist())
    self.assertEqual(
        [[1, 2, 3], [5, 0, 0]],
        batch.actions.tolist())

    rew1, rew2 = rollouts[0].rewards, rollouts[1].rewards
    expected_discounted_rewards = [
        [rew1[0] + g * rew1[1] + g * g * rew1[2],
         rew1[1] + g * rew1[2],
         rew1[2]],
        [rew2[0], 0.0, 0.0]]
    expected_advantages = [
        [dr - v
         for dr, v
         in zip(expected_discounted_rewards[0], rollouts[0].values)],
        [expected_discounted_rewards[1][0] - rollouts[1].values[0], 0.0, 0.0]]
    self.assertTrue(
        np.allclose(expected_discounted_rewards, batch.discounted_r))
    self.assertTrue(
        np.allclose(expected_advantages, batch.discounted_adv))


if __name__ == '__main__':
  tf.test.main()