File size: 9,172 Bytes
97b6013
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

r"""Run grid search.

Look at launch_tuning.sh for details on how to tune at scale.

Usage example:
Tune with one worker on the local machine.

CONFIG="agent=c(algorithm='pg'),"
CONFIG+="env=c(task_cycle=['reverse-tune', 'remove-tune'])"
HPARAM_SPACE_TYPE="pg"
OUT_DIR="/tmp/bf_pg_tune"
MAX_NPE=5000000
NUM_REPETITIONS=50
rm -rf $OUT_DIR
mkdir $OUT_DIR
bazel run -c opt single_task:tune -- \
    --alsologtostderr \
    --config="$CONFIG" \
    --max_npe="$MAX_NPE" \
    --num_repetitions="$NUM_REPETITIONS" \
    --logdir="$OUT_DIR" \
    --summary_interval=1 \
    --model_v=0 \
    --hparam_space="$HPARAM_SPACE_TYPE" \
    --tuner_id=0 \
    --num_tuners=1 \
    2>&1 >"$OUT_DIR/tuner_0.log"
learning/brain/tensorboard/tensorboard.sh --port 12345 --logdir "$OUT_DIR"
"""

import ast
import os

from absl import app
from absl import flags
from absl import logging
import numpy as np
from six.moves import xrange
import tensorflow as tf

from single_task import defaults  # brain coder
from single_task import run as run_lib  # brain coder

FLAGS = flags.FLAGS
flags.DEFINE_integer(
    'tuner_id', 0,
    'The unique ID for this tuning worker.')
flags.DEFINE_integer(
    'num_tuners', 1,
    'How many tuners are there.')
flags.DEFINE_string(
    'hparam_space', 'default',
    'String name which denotes the hparam space to tune over. This is '
    'algorithm dependent.')
flags.DEFINE_string(
    'fixed_hparams', '',
    'HParams string. Used to fix hparams during tuning.')
flags.DEFINE_float(
    'success_rate_objective_weight', 1.0,
    'How much to weight success rate vs num programs seen. By default, only '
    'success rate is optimized (this is the setting used in the paper).')


def parse_hparams_string(hparams_str):
  hparams = {}
  for term in hparams_str.split(','):
    if not term:
      continue
    name, value = term.split('=')
    hparams[name.strip()] = ast.literal_eval(value)
  return hparams


def int_to_multibase(n, bases):
  digits = [0] * len(bases)
  for i, b in enumerate(bases):
    n, d = divmod(n, b)
    digits[i] = d
  return digits


def hparams_for_index(index, tuning_space):
  keys = sorted(tuning_space.keys())
  indices = int_to_multibase(index, [len(tuning_space[k]) for k in keys])
  return tf.contrib.training.HParams(
      **{k: tuning_space[k][i] for k, i in zip(keys, indices)})


def run_tuner_loop(ns):
  """Run tuning loop for this worker."""
  is_chief = FLAGS.task_id == 0
  tuning_space = ns.define_tuner_hparam_space(
      hparam_space_type=FLAGS.hparam_space)
  fixed_hparams = parse_hparams_string(FLAGS.fixed_hparams)
  for name, value in fixed_hparams.iteritems():
    tuning_space[name] = [value]
  tuning_space_size = np.prod([len(values) for values in tuning_space.values()])

  num_local_trials, remainder = divmod(tuning_space_size, FLAGS.num_tuners)
  if FLAGS.tuner_id < remainder:
    num_local_trials += 1
  starting_trial_id = (
      num_local_trials * FLAGS.tuner_id + min(remainder, FLAGS.tuner_id))

  logging.info('tuning_space_size: %d', tuning_space_size)
  logging.info('num_local_trials: %d', num_local_trials)
  logging.info('starting_trial_id: %d', starting_trial_id)

  for local_trial_index in xrange(num_local_trials):
    trial_config = defaults.default_config_with_updates(FLAGS.config)
    global_trial_index = local_trial_index + starting_trial_id
    trial_name = 'trial_' + str(global_trial_index)
    trial_dir = os.path.join(FLAGS.logdir, trial_name)
    hparams = hparams_for_index(global_trial_index, tuning_space)
    ns.write_hparams_to_config(
        trial_config, hparams, hparam_space_type=FLAGS.hparam_space)

    results_list = ns.run_training(
        config=trial_config, tuner=None, logdir=trial_dir, is_chief=is_chief,
        trial_name=trial_name)

    if not is_chief:
      # Only chief worker needs to write tuning results to disk.
      continue

    objective, metrics = compute_tuning_objective(
        results_list, hparams, trial_name, num_trials=tuning_space_size)
    logging.info('metrics:\n%s', metrics)
    logging.info('objective: %s', objective)
    logging.info('programs_seen_fraction: %s',
                 metrics['programs_seen_fraction'])
    logging.info('success_rate: %s', metrics['success_rate'])
    logging.info('success_rate_objective_weight: %s',
                 FLAGS.success_rate_objective_weight)

    tuning_results_file = os.path.join(trial_dir, 'tuning_results.txt')
    with tf.gfile.FastGFile(tuning_results_file, 'a') as writer:
      writer.write(str(metrics) + '\n')

    logging.info('Trial %s complete.', trial_name)


def compute_tuning_objective(results_list, hparams, trial_name, num_trials):
  """Compute tuning objective and metrics given results and trial information.

  Args:
    results_list: List of results dicts read from disk. These are written by
        workers.
    hparams: tf.contrib.training.HParams instance containing the hparams used
        in this trial (only the hparams which are being tuned).
    trial_name: Name of this trial. Used to create a trial directory.
    num_trials: Total number of trials that need to be run. This is saved in the
        metrics dict for future reference.

  Returns:
    objective: The objective computed for this trial. Choose the hparams for the
        trial with the largest objective value.
    metrics: Information about this trial. A dict.
  """
  found_solution = [r['found_solution'] for r in results_list]
  successful_program_counts = [
      r['npe'] for r in results_list if r['found_solution']]

  success_rate = sum(found_solution) / float(len(results_list))

  max_programs = FLAGS.max_npe  # Per run.
  all_program_counts = [
      r['npe'] if r['found_solution'] else max_programs
      for r in results_list]
  programs_seen_fraction = (
      float(sum(all_program_counts))
      / (max_programs * len(all_program_counts)))

  # min/max/avg stats are over successful runs.
  metrics = {
      'num_runs': len(results_list),
      'num_succeeded': sum(found_solution),
      'success_rate': success_rate,
      'programs_seen_fraction': programs_seen_fraction,
      'avg_programs': np.mean(successful_program_counts),
      'max_possible_programs_per_run': max_programs,
      'global_step': sum([r['num_batches'] for r in results_list]),
      'hparams': hparams.values(),
      'trial_name': trial_name,
      'num_trials': num_trials}

  # Report stats per tasks.
  tasks = [r['task'] for r in results_list]
  for task in set(tasks):
    task_list = [r for r in results_list if r['task'] == task]
    found_solution = [r['found_solution'] for r in task_list]
    successful_rewards = [
        r['best_reward'] for r in task_list
        if r['found_solution']]
    successful_num_batches = [
        r['num_batches']
        for r in task_list if r['found_solution']]
    successful_program_counts = [
        r['npe'] for r in task_list if r['found_solution']]
    metrics_append = {
        task + '__num_runs': len(task_list),
        task + '__num_succeeded': sum(found_solution),
        task + '__success_rate': (
            sum(found_solution) / float(len(task_list)))}
    metrics.update(metrics_append)
    if any(found_solution):
      metrics_append = {
          task + '__min_reward': min(successful_rewards),
          task + '__max_reward': max(successful_rewards),
          task + '__avg_reward': np.median(successful_rewards),
          task + '__min_programs': min(successful_program_counts),
          task + '__max_programs': max(successful_program_counts),
          task + '__avg_programs': np.mean(successful_program_counts),
          task + '__min_batches': min(successful_num_batches),
          task + '__max_batches': max(successful_num_batches),
          task + '__avg_batches': np.mean(successful_num_batches)}
      metrics.update(metrics_append)

  # Objective will be maximized.
  # Maximize success rate, minimize num programs seen.
  # Max objective is always 1.
  weight = FLAGS.success_rate_objective_weight
  objective = (
      weight * success_rate
      + (1 - weight) * (1 - programs_seen_fraction))
  metrics['objective'] = objective

  return objective, metrics


def main(argv):
  del argv

  logging.set_verbosity(FLAGS.log_level)

  if not FLAGS.logdir:
    raise ValueError('logdir flag must be provided.')
  if FLAGS.num_workers <= 0:
    raise ValueError('num_workers flag must be greater than 0.')
  if FLAGS.task_id < 0:
    raise ValueError('task_id flag must be greater than or equal to 0.')
  if FLAGS.task_id >= FLAGS.num_workers:
    raise ValueError(
        'task_id flag must be strictly less than num_workers flag.')
  if FLAGS.num_tuners <= 0:
    raise ValueError('num_tuners flag must be greater than 0.')
  if FLAGS.tuner_id < 0:
    raise ValueError('tuner_id flag must be greater than or equal to 0.')
  if FLAGS.tuner_id >= FLAGS.num_tuners:
    raise ValueError(
        'tuner_id flag must be strictly less than num_tuners flag.')

  ns, _ = run_lib.get_namespace(FLAGS.config)
  run_tuner_loop(ns)


if __name__ == '__main__':
  app.run(main)