File size: 9,172 Bytes
97b6013 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 |
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
r"""Run grid search.
Look at launch_tuning.sh for details on how to tune at scale.
Usage example:
Tune with one worker on the local machine.
CONFIG="agent=c(algorithm='pg'),"
CONFIG+="env=c(task_cycle=['reverse-tune', 'remove-tune'])"
HPARAM_SPACE_TYPE="pg"
OUT_DIR="/tmp/bf_pg_tune"
MAX_NPE=5000000
NUM_REPETITIONS=50
rm -rf $OUT_DIR
mkdir $OUT_DIR
bazel run -c opt single_task:tune -- \
--alsologtostderr \
--config="$CONFIG" \
--max_npe="$MAX_NPE" \
--num_repetitions="$NUM_REPETITIONS" \
--logdir="$OUT_DIR" \
--summary_interval=1 \
--model_v=0 \
--hparam_space="$HPARAM_SPACE_TYPE" \
--tuner_id=0 \
--num_tuners=1 \
2>&1 >"$OUT_DIR/tuner_0.log"
learning/brain/tensorboard/tensorboard.sh --port 12345 --logdir "$OUT_DIR"
"""
import ast
import os
from absl import app
from absl import flags
from absl import logging
import numpy as np
from six.moves import xrange
import tensorflow as tf
from single_task import defaults # brain coder
from single_task import run as run_lib # brain coder
FLAGS = flags.FLAGS
flags.DEFINE_integer(
'tuner_id', 0,
'The unique ID for this tuning worker.')
flags.DEFINE_integer(
'num_tuners', 1,
'How many tuners are there.')
flags.DEFINE_string(
'hparam_space', 'default',
'String name which denotes the hparam space to tune over. This is '
'algorithm dependent.')
flags.DEFINE_string(
'fixed_hparams', '',
'HParams string. Used to fix hparams during tuning.')
flags.DEFINE_float(
'success_rate_objective_weight', 1.0,
'How much to weight success rate vs num programs seen. By default, only '
'success rate is optimized (this is the setting used in the paper).')
def parse_hparams_string(hparams_str):
hparams = {}
for term in hparams_str.split(','):
if not term:
continue
name, value = term.split('=')
hparams[name.strip()] = ast.literal_eval(value)
return hparams
def int_to_multibase(n, bases):
digits = [0] * len(bases)
for i, b in enumerate(bases):
n, d = divmod(n, b)
digits[i] = d
return digits
def hparams_for_index(index, tuning_space):
keys = sorted(tuning_space.keys())
indices = int_to_multibase(index, [len(tuning_space[k]) for k in keys])
return tf.contrib.training.HParams(
**{k: tuning_space[k][i] for k, i in zip(keys, indices)})
def run_tuner_loop(ns):
"""Run tuning loop for this worker."""
is_chief = FLAGS.task_id == 0
tuning_space = ns.define_tuner_hparam_space(
hparam_space_type=FLAGS.hparam_space)
fixed_hparams = parse_hparams_string(FLAGS.fixed_hparams)
for name, value in fixed_hparams.iteritems():
tuning_space[name] = [value]
tuning_space_size = np.prod([len(values) for values in tuning_space.values()])
num_local_trials, remainder = divmod(tuning_space_size, FLAGS.num_tuners)
if FLAGS.tuner_id < remainder:
num_local_trials += 1
starting_trial_id = (
num_local_trials * FLAGS.tuner_id + min(remainder, FLAGS.tuner_id))
logging.info('tuning_space_size: %d', tuning_space_size)
logging.info('num_local_trials: %d', num_local_trials)
logging.info('starting_trial_id: %d', starting_trial_id)
for local_trial_index in xrange(num_local_trials):
trial_config = defaults.default_config_with_updates(FLAGS.config)
global_trial_index = local_trial_index + starting_trial_id
trial_name = 'trial_' + str(global_trial_index)
trial_dir = os.path.join(FLAGS.logdir, trial_name)
hparams = hparams_for_index(global_trial_index, tuning_space)
ns.write_hparams_to_config(
trial_config, hparams, hparam_space_type=FLAGS.hparam_space)
results_list = ns.run_training(
config=trial_config, tuner=None, logdir=trial_dir, is_chief=is_chief,
trial_name=trial_name)
if not is_chief:
# Only chief worker needs to write tuning results to disk.
continue
objective, metrics = compute_tuning_objective(
results_list, hparams, trial_name, num_trials=tuning_space_size)
logging.info('metrics:\n%s', metrics)
logging.info('objective: %s', objective)
logging.info('programs_seen_fraction: %s',
metrics['programs_seen_fraction'])
logging.info('success_rate: %s', metrics['success_rate'])
logging.info('success_rate_objective_weight: %s',
FLAGS.success_rate_objective_weight)
tuning_results_file = os.path.join(trial_dir, 'tuning_results.txt')
with tf.gfile.FastGFile(tuning_results_file, 'a') as writer:
writer.write(str(metrics) + '\n')
logging.info('Trial %s complete.', trial_name)
def compute_tuning_objective(results_list, hparams, trial_name, num_trials):
"""Compute tuning objective and metrics given results and trial information.
Args:
results_list: List of results dicts read from disk. These are written by
workers.
hparams: tf.contrib.training.HParams instance containing the hparams used
in this trial (only the hparams which are being tuned).
trial_name: Name of this trial. Used to create a trial directory.
num_trials: Total number of trials that need to be run. This is saved in the
metrics dict for future reference.
Returns:
objective: The objective computed for this trial. Choose the hparams for the
trial with the largest objective value.
metrics: Information about this trial. A dict.
"""
found_solution = [r['found_solution'] for r in results_list]
successful_program_counts = [
r['npe'] for r in results_list if r['found_solution']]
success_rate = sum(found_solution) / float(len(results_list))
max_programs = FLAGS.max_npe # Per run.
all_program_counts = [
r['npe'] if r['found_solution'] else max_programs
for r in results_list]
programs_seen_fraction = (
float(sum(all_program_counts))
/ (max_programs * len(all_program_counts)))
# min/max/avg stats are over successful runs.
metrics = {
'num_runs': len(results_list),
'num_succeeded': sum(found_solution),
'success_rate': success_rate,
'programs_seen_fraction': programs_seen_fraction,
'avg_programs': np.mean(successful_program_counts),
'max_possible_programs_per_run': max_programs,
'global_step': sum([r['num_batches'] for r in results_list]),
'hparams': hparams.values(),
'trial_name': trial_name,
'num_trials': num_trials}
# Report stats per tasks.
tasks = [r['task'] for r in results_list]
for task in set(tasks):
task_list = [r for r in results_list if r['task'] == task]
found_solution = [r['found_solution'] for r in task_list]
successful_rewards = [
r['best_reward'] for r in task_list
if r['found_solution']]
successful_num_batches = [
r['num_batches']
for r in task_list if r['found_solution']]
successful_program_counts = [
r['npe'] for r in task_list if r['found_solution']]
metrics_append = {
task + '__num_runs': len(task_list),
task + '__num_succeeded': sum(found_solution),
task + '__success_rate': (
sum(found_solution) / float(len(task_list)))}
metrics.update(metrics_append)
if any(found_solution):
metrics_append = {
task + '__min_reward': min(successful_rewards),
task + '__max_reward': max(successful_rewards),
task + '__avg_reward': np.median(successful_rewards),
task + '__min_programs': min(successful_program_counts),
task + '__max_programs': max(successful_program_counts),
task + '__avg_programs': np.mean(successful_program_counts),
task + '__min_batches': min(successful_num_batches),
task + '__max_batches': max(successful_num_batches),
task + '__avg_batches': np.mean(successful_num_batches)}
metrics.update(metrics_append)
# Objective will be maximized.
# Maximize success rate, minimize num programs seen.
# Max objective is always 1.
weight = FLAGS.success_rate_objective_weight
objective = (
weight * success_rate
+ (1 - weight) * (1 - programs_seen_fraction))
metrics['objective'] = objective
return objective, metrics
def main(argv):
del argv
logging.set_verbosity(FLAGS.log_level)
if not FLAGS.logdir:
raise ValueError('logdir flag must be provided.')
if FLAGS.num_workers <= 0:
raise ValueError('num_workers flag must be greater than 0.')
if FLAGS.task_id < 0:
raise ValueError('task_id flag must be greater than or equal to 0.')
if FLAGS.task_id >= FLAGS.num_workers:
raise ValueError(
'task_id flag must be strictly less than num_workers flag.')
if FLAGS.num_tuners <= 0:
raise ValueError('num_tuners flag must be greater than 0.')
if FLAGS.tuner_id < 0:
raise ValueError('tuner_id flag must be greater than or equal to 0.')
if FLAGS.tuner_id >= FLAGS.num_tuners:
raise ValueError(
'tuner_id flag must be strictly less than num_tuners flag.')
ns, _ = run_lib.get_namespace(FLAGS.config)
run_tuner_loop(ns)
if __name__ == '__main__':
app.run(main)
|