File size: 22,640 Bytes
97b6013 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 |
# Copyright 2018 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Simple example of contextual bandits simulation.
Code corresponding to:
Deep Bayesian Bandits Showdown: An Empirical Comparison of Bayesian Deep Networks
for Thompson Sampling, by Carlos Riquelme, George Tucker, and Jasper Snoek.
https://arxiv.org/abs/1802.09127
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import time
from absl import app
from absl import flags
import numpy as np
import os
import tensorflow as tf
from bandits.algorithms.bootstrapped_bnn_sampling import BootstrappedBNNSampling
from bandits.core.contextual_bandit import run_contextual_bandit
from bandits.data.data_sampler import sample_adult_data
from bandits.data.data_sampler import sample_census_data
from bandits.data.data_sampler import sample_covertype_data
from bandits.data.data_sampler import sample_jester_data
from bandits.data.data_sampler import sample_mushroom_data
from bandits.data.data_sampler import sample_statlog_data
from bandits.data.data_sampler import sample_stock_data
from bandits.algorithms.fixed_policy_sampling import FixedPolicySampling
from bandits.algorithms.linear_full_posterior_sampling import LinearFullPosteriorSampling
from bandits.algorithms.neural_linear_sampling import NeuralLinearPosteriorSampling
from bandits.algorithms.parameter_noise_sampling import ParameterNoiseSampling
from bandits.algorithms.posterior_bnn_sampling import PosteriorBNNSampling
from bandits.data.synthetic_data_sampler import sample_linear_data
from bandits.data.synthetic_data_sampler import sample_sparse_linear_data
from bandits.data.synthetic_data_sampler import sample_wheel_bandit_data
from bandits.algorithms.uniform_sampling import UniformSampling
# Set up your file routes to the data files.
base_route = os.getcwd()
data_route = 'contextual_bandits/datasets'
FLAGS = flags.FLAGS
FLAGS.set_default('alsologtostderr', True)
flags.DEFINE_string('logdir', '/tmp/bandits/', 'Base directory to save output')
flags.DEFINE_string(
'mushroom_data',
os.path.join(base_route, data_route, 'mushroom.data'),
'Directory where Mushroom data is stored.')
flags.DEFINE_string(
'financial_data',
os.path.join(base_route, data_route, 'raw_stock_contexts'),
'Directory where Financial data is stored.')
flags.DEFINE_string(
'jester_data',
os.path.join(base_route, data_route, 'jester_data_40jokes_19181users.npy'),
'Directory where Jester data is stored.')
flags.DEFINE_string(
'statlog_data',
os.path.join(base_route, data_route, 'shuttle.trn'),
'Directory where Statlog data is stored.')
flags.DEFINE_string(
'adult_data',
os.path.join(base_route, data_route, 'adult.full'),
'Directory where Adult data is stored.')
flags.DEFINE_string(
'covertype_data',
os.path.join(base_route, data_route, 'covtype.data'),
'Directory where Covertype data is stored.')
flags.DEFINE_string(
'census_data',
os.path.join(base_route, data_route, 'USCensus1990.data.txt'),
'Directory where Census data is stored.')
def sample_data(data_type, num_contexts=None):
"""Sample data from given 'data_type'.
Args:
data_type: Dataset from which to sample.
num_contexts: Number of contexts to sample.
Returns:
dataset: Sampled matrix with rows: (context, reward_1, ..., reward_num_act).
opt_rewards: Vector of expected optimal reward for each context.
opt_actions: Vector of optimal action for each context.
num_actions: Number of available actions.
context_dim: Dimension of each context.
"""
if data_type == 'linear':
# Create linear dataset
num_actions = 8
context_dim = 10
noise_stds = [0.01 * (i + 1) for i in range(num_actions)]
dataset, _, opt_linear = sample_linear_data(num_contexts, context_dim,
num_actions, sigma=noise_stds)
opt_rewards, opt_actions = opt_linear
elif data_type == 'sparse_linear':
# Create sparse linear dataset
num_actions = 7
context_dim = 10
noise_stds = [0.01 * (i + 1) for i in range(num_actions)]
num_nnz_dims = int(context_dim / 3.0)
dataset, _, opt_sparse_linear = sample_sparse_linear_data(
num_contexts, context_dim, num_actions, num_nnz_dims, sigma=noise_stds)
opt_rewards, opt_actions = opt_sparse_linear
elif data_type == 'mushroom':
# Create mushroom dataset
num_actions = 2
context_dim = 117
file_name = FLAGS.mushroom_data
dataset, opt_mushroom = sample_mushroom_data(file_name, num_contexts)
opt_rewards, opt_actions = opt_mushroom
elif data_type == 'financial':
num_actions = 8
context_dim = 21
num_contexts = min(3713, num_contexts)
noise_stds = [0.01 * (i + 1) for i in range(num_actions)]
file_name = FLAGS.financial_data
dataset, opt_financial = sample_stock_data(file_name, context_dim,
num_actions, num_contexts,
noise_stds, shuffle_rows=True)
opt_rewards, opt_actions = opt_financial
elif data_type == 'jester':
num_actions = 8
context_dim = 32
num_contexts = min(19181, num_contexts)
file_name = FLAGS.jester_data
dataset, opt_jester = sample_jester_data(file_name, context_dim,
num_actions, num_contexts,
shuffle_rows=True,
shuffle_cols=True)
opt_rewards, opt_actions = opt_jester
elif data_type == 'statlog':
file_name = FLAGS.statlog_data
num_actions = 7
num_contexts = min(43500, num_contexts)
sampled_vals = sample_statlog_data(file_name, num_contexts,
shuffle_rows=True)
contexts, rewards, (opt_rewards, opt_actions) = sampled_vals
dataset = np.hstack((contexts, rewards))
context_dim = contexts.shape[1]
elif data_type == 'adult':
file_name = FLAGS.adult_data
num_actions = 14
num_contexts = min(45222, num_contexts)
sampled_vals = sample_adult_data(file_name, num_contexts,
shuffle_rows=True)
contexts, rewards, (opt_rewards, opt_actions) = sampled_vals
dataset = np.hstack((contexts, rewards))
context_dim = contexts.shape[1]
elif data_type == 'covertype':
file_name = FLAGS.covertype_data
num_actions = 7
num_contexts = min(150000, num_contexts)
sampled_vals = sample_covertype_data(file_name, num_contexts,
shuffle_rows=True)
contexts, rewards, (opt_rewards, opt_actions) = sampled_vals
dataset = np.hstack((contexts, rewards))
context_dim = contexts.shape[1]
elif data_type == 'census':
file_name = FLAGS.census_data
num_actions = 9
num_contexts = min(150000, num_contexts)
sampled_vals = sample_census_data(file_name, num_contexts,
shuffle_rows=True)
contexts, rewards, (opt_rewards, opt_actions) = sampled_vals
dataset = np.hstack((contexts, rewards))
context_dim = contexts.shape[1]
elif data_type == 'wheel':
delta = 0.95
num_actions = 5
context_dim = 2
mean_v = [1.0, 1.0, 1.0, 1.0, 1.2]
std_v = [0.05, 0.05, 0.05, 0.05, 0.05]
mu_large = 50
std_large = 0.01
dataset, opt_wheel = sample_wheel_bandit_data(num_contexts, delta,
mean_v, std_v,
mu_large, std_large)
opt_rewards, opt_actions = opt_wheel
return dataset, opt_rewards, opt_actions, num_actions, context_dim
def display_results(algos, opt_rewards, opt_actions, h_rewards, t_init, name):
"""Displays summary statistics of the performance of each algorithm."""
print('---------------------------------------------------')
print('---------------------------------------------------')
print('{} bandit completed after {} seconds.'.format(
name, time.time() - t_init))
print('---------------------------------------------------')
performance_pairs = []
for j, a in enumerate(algos):
performance_pairs.append((a.name, np.sum(h_rewards[:, j])))
performance_pairs = sorted(performance_pairs,
key=lambda elt: elt[1],
reverse=True)
for i, (name, reward) in enumerate(performance_pairs):
print('{:3}) {:20}| \t \t total reward = {:10}.'.format(i, name, reward))
print('---------------------------------------------------')
print('Optimal total reward = {}.'.format(np.sum(opt_rewards)))
print('Frequency of optimal actions (action, frequency):')
print([[elt, list(opt_actions).count(elt)] for elt in set(opt_actions)])
print('---------------------------------------------------')
print('---------------------------------------------------')
def main(_):
# Problem parameters
num_contexts = 2000
# Data type in {linear, sparse_linear, mushroom, financial, jester,
# statlog, adult, covertype, census, wheel}
data_type = 'mushroom'
# Create dataset
sampled_vals = sample_data(data_type, num_contexts)
dataset, opt_rewards, opt_actions, num_actions, context_dim = sampled_vals
# Define hyperparameters and algorithms
hparams = tf.contrib.training.HParams(num_actions=num_actions)
hparams_linear = tf.contrib.training.HParams(num_actions=num_actions,
context_dim=context_dim,
a0=6,
b0=6,
lambda_prior=0.25,
initial_pulls=2)
hparams_rms = tf.contrib.training.HParams(num_actions=num_actions,
context_dim=context_dim,
init_scale=0.3,
activation=tf.nn.relu,
layer_sizes=[50],
batch_size=512,
activate_decay=True,
initial_lr=0.1,
max_grad_norm=5.0,
show_training=False,
freq_summary=1000,
buffer_s=-1,
initial_pulls=2,
optimizer='RMS',
reset_lr=True,
lr_decay_rate=0.5,
training_freq=50,
training_epochs=100,
p=0.95,
q=3)
hparams_dropout = tf.contrib.training.HParams(num_actions=num_actions,
context_dim=context_dim,
init_scale=0.3,
activation=tf.nn.relu,
layer_sizes=[50],
batch_size=512,
activate_decay=True,
initial_lr=0.1,
max_grad_norm=5.0,
show_training=False,
freq_summary=1000,
buffer_s=-1,
initial_pulls=2,
optimizer='RMS',
reset_lr=True,
lr_decay_rate=0.5,
training_freq=50,
training_epochs=100,
use_dropout=True,
keep_prob=0.80)
hparams_bbb = tf.contrib.training.HParams(num_actions=num_actions,
context_dim=context_dim,
init_scale=0.3,
activation=tf.nn.relu,
layer_sizes=[50],
batch_size=512,
activate_decay=True,
initial_lr=0.1,
max_grad_norm=5.0,
show_training=False,
freq_summary=1000,
buffer_s=-1,
initial_pulls=2,
optimizer='RMS',
use_sigma_exp_transform=True,
cleared_times_trained=10,
initial_training_steps=100,
noise_sigma=0.1,
reset_lr=False,
training_freq=50,
training_epochs=100)
hparams_nlinear = tf.contrib.training.HParams(num_actions=num_actions,
context_dim=context_dim,
init_scale=0.3,
activation=tf.nn.relu,
layer_sizes=[50],
batch_size=512,
activate_decay=True,
initial_lr=0.1,
max_grad_norm=5.0,
show_training=False,
freq_summary=1000,
buffer_s=-1,
initial_pulls=2,
reset_lr=True,
lr_decay_rate=0.5,
training_freq=1,
training_freq_network=50,
training_epochs=100,
a0=6,
b0=6,
lambda_prior=0.25)
hparams_nlinear2 = tf.contrib.training.HParams(num_actions=num_actions,
context_dim=context_dim,
init_scale=0.3,
activation=tf.nn.relu,
layer_sizes=[50],
batch_size=512,
activate_decay=True,
initial_lr=0.1,
max_grad_norm=5.0,
show_training=False,
freq_summary=1000,
buffer_s=-1,
initial_pulls=2,
reset_lr=True,
lr_decay_rate=0.5,
training_freq=10,
training_freq_network=50,
training_epochs=100,
a0=6,
b0=6,
lambda_prior=0.25)
hparams_pnoise = tf.contrib.training.HParams(num_actions=num_actions,
context_dim=context_dim,
init_scale=0.3,
activation=tf.nn.relu,
layer_sizes=[50],
batch_size=512,
activate_decay=True,
initial_lr=0.1,
max_grad_norm=5.0,
show_training=False,
freq_summary=1000,
buffer_s=-1,
initial_pulls=2,
optimizer='RMS',
reset_lr=True,
lr_decay_rate=0.5,
training_freq=50,
training_epochs=100,
noise_std=0.05,
eps=0.1,
d_samples=300,
)
hparams_alpha_div = tf.contrib.training.HParams(num_actions=num_actions,
context_dim=context_dim,
init_scale=0.3,
activation=tf.nn.relu,
layer_sizes=[50],
batch_size=512,
activate_decay=True,
initial_lr=0.1,
max_grad_norm=5.0,
show_training=False,
freq_summary=1000,
buffer_s=-1,
initial_pulls=2,
optimizer='RMS',
use_sigma_exp_transform=True,
cleared_times_trained=10,
initial_training_steps=100,
noise_sigma=0.1,
reset_lr=False,
training_freq=50,
training_epochs=100,
alpha=1.0,
k=20,
prior_variance=0.1)
hparams_gp = tf.contrib.training.HParams(num_actions=num_actions,
num_outputs=num_actions,
context_dim=context_dim,
reset_lr=False,
learn_embeddings=True,
max_num_points=1000,
show_training=False,
freq_summary=1000,
batch_size=512,
keep_fixed_after_max_obs=True,
training_freq=50,
initial_pulls=2,
training_epochs=100,
lr=0.01,
buffer_s=-1,
initial_lr=0.001,
lr_decay_rate=0.0,
optimizer='RMS',
task_latent_dim=5,
activate_decay=False)
algos = [
UniformSampling('Uniform Sampling', hparams),
UniformSampling('Uniform Sampling 2', hparams),
FixedPolicySampling('fixed1', [0.75, 0.25], hparams),
FixedPolicySampling('fixed2', [0.25, 0.75], hparams),
PosteriorBNNSampling('RMS', hparams_rms, 'RMSProp'),
PosteriorBNNSampling('Dropout', hparams_dropout, 'RMSProp'),
PosteriorBNNSampling('BBB', hparams_bbb, 'Variational'),
NeuralLinearPosteriorSampling('NeuralLinear', hparams_nlinear),
NeuralLinearPosteriorSampling('NeuralLinear2', hparams_nlinear2),
LinearFullPosteriorSampling('LinFullPost', hparams_linear),
BootstrappedBNNSampling('BootRMS', hparams_rms),
ParameterNoiseSampling('ParamNoise', hparams_pnoise),
PosteriorBNNSampling('BBAlphaDiv', hparams_alpha_div, 'AlphaDiv'),
PosteriorBNNSampling('MultitaskGP', hparams_gp, 'GP'),
]
# Run contextual bandit problem
t_init = time.time()
results = run_contextual_bandit(context_dim, num_actions, dataset, algos)
_, h_rewards = results
# Display results
display_results(algos, opt_rewards, opt_actions, h_rewards, t_init, data_type)
if __name__ == '__main__':
app.run(main)
|