File size: 9,449 Bytes
97b6013 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 |
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Generate tf.data.Dataset object for deep speech training/evaluation."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
import random
# pylint: disable=g-bad-import-order
import numpy as np
from six.moves import xrange # pylint: disable=redefined-builtin
import soundfile
import tensorflow as tf
# pylint: enable=g-bad-import-order
import data.featurizer as featurizer # pylint: disable=g-bad-import-order
class AudioConfig(object):
"""Configs for spectrogram extraction from audio."""
def __init__(self,
sample_rate,
window_ms,
stride_ms,
normalize=False):
"""Initialize the AudioConfig class.
Args:
sample_rate: an integer denoting the sample rate of the input waveform.
window_ms: an integer for the length of a spectrogram frame, in ms.
stride_ms: an integer for the frame stride, in ms.
normalize: a boolean for whether apply normalization on the audio feature.
"""
self.sample_rate = sample_rate
self.window_ms = window_ms
self.stride_ms = stride_ms
self.normalize = normalize
class DatasetConfig(object):
"""Config class for generating the DeepSpeechDataset."""
def __init__(self, audio_config, data_path, vocab_file_path, sortagrad):
"""Initialize the configs for deep speech dataset.
Args:
audio_config: AudioConfig object specifying the audio-related configs.
data_path: a string denoting the full path of a manifest file.
vocab_file_path: a string specifying the vocabulary file path.
sortagrad: a boolean, if set to true, audio sequences will be fed by
increasing length in the first training epoch, which will
expedite network convergence.
Raises:
RuntimeError: file path not exist.
"""
self.audio_config = audio_config
assert tf.gfile.Exists(data_path)
assert tf.gfile.Exists(vocab_file_path)
self.data_path = data_path
self.vocab_file_path = vocab_file_path
self.sortagrad = sortagrad
def _normalize_audio_feature(audio_feature):
"""Perform mean and variance normalization on the spectrogram feature.
Args:
audio_feature: a numpy array for the spectrogram feature.
Returns:
a numpy array of the normalized spectrogram.
"""
mean = np.mean(audio_feature, axis=0)
var = np.var(audio_feature, axis=0)
normalized = (audio_feature - mean) / (np.sqrt(var) + 1e-6)
return normalized
def _preprocess_audio(audio_file_path, audio_featurizer, normalize):
"""Load the audio file and compute spectrogram feature."""
data, _ = soundfile.read(audio_file_path)
feature = featurizer.compute_spectrogram_feature(
data, audio_featurizer.sample_rate, audio_featurizer.stride_ms,
audio_featurizer.window_ms)
# Feature normalization
if normalize:
feature = _normalize_audio_feature(feature)
# Adding Channel dimension for conv2D input.
feature = np.expand_dims(feature, axis=2)
return feature
def _preprocess_data(file_path):
"""Generate a list of tuples (wav_filename, wav_filesize, transcript).
Each dataset file contains three columns: "wav_filename", "wav_filesize",
and "transcript". This function parses the csv file and stores each example
by the increasing order of audio length (indicated by wav_filesize).
AS the waveforms are ordered in increasing length, audio samples in a
mini-batch have similar length.
Args:
file_path: a string specifying the csv file path for a dataset.
Returns:
A list of tuples (wav_filename, wav_filesize, transcript) sorted by
file_size.
"""
tf.logging.info("Loading data set {}".format(file_path))
with tf.gfile.Open(file_path, "r") as f:
lines = f.read().splitlines()
# Skip the csv header in lines[0].
lines = lines[1:]
# The metadata file is tab separated.
lines = [line.split("\t", 2) for line in lines]
# Sort input data by the length of audio sequence.
lines.sort(key=lambda item: int(item[1]))
return [tuple(line) for line in lines]
class DeepSpeechDataset(object):
"""Dataset class for training/evaluation of DeepSpeech model."""
def __init__(self, dataset_config):
"""Initialize the DeepSpeechDataset class.
Args:
dataset_config: DatasetConfig object.
"""
self.config = dataset_config
# Instantiate audio feature extractor.
self.audio_featurizer = featurizer.AudioFeaturizer(
sample_rate=self.config.audio_config.sample_rate,
window_ms=self.config.audio_config.window_ms,
stride_ms=self.config.audio_config.stride_ms)
# Instantiate text feature extractor.
self.text_featurizer = featurizer.TextFeaturizer(
vocab_file=self.config.vocab_file_path)
self.speech_labels = self.text_featurizer.speech_labels
self.entries = _preprocess_data(self.config.data_path)
# The generated spectrogram will have 161 feature bins.
self.num_feature_bins = 161
def batch_wise_dataset_shuffle(entries, epoch_index, sortagrad, batch_size):
"""Batch-wise shuffling of the data entries.
Each data entry is in the format of (audio_file, file_size, transcript).
If epoch_index is 0 and sortagrad is true, we don't perform shuffling and
return entries in sorted file_size order. Otherwise, do batch_wise shuffling.
Args:
entries: a list of data entries.
epoch_index: an integer of epoch index
sortagrad: a boolean to control whether sorting the audio in the first
training epoch.
batch_size: an integer for the batch size.
Returns:
The shuffled data entries.
"""
shuffled_entries = []
if epoch_index == 0 and sortagrad:
# No need to shuffle.
shuffled_entries = entries
else:
# Shuffle entries batch-wise.
max_buckets = int(math.floor(len(entries) / batch_size))
total_buckets = [i for i in xrange(max_buckets)]
random.shuffle(total_buckets)
shuffled_entries = []
for i in total_buckets:
shuffled_entries.extend(entries[i * batch_size : (i + 1) * batch_size])
# If the last batch doesn't contain enough batch_size examples,
# just append it to the shuffled_entries.
shuffled_entries.extend(entries[max_buckets * batch_size:])
return shuffled_entries
def input_fn(batch_size, deep_speech_dataset, repeat=1):
"""Input function for model training and evaluation.
Args:
batch_size: an integer denoting the size of a batch.
deep_speech_dataset: DeepSpeechDataset object.
repeat: an integer for how many times to repeat the dataset.
Returns:
a tf.data.Dataset object for model to consume.
"""
# Dataset properties
data_entries = deep_speech_dataset.entries
num_feature_bins = deep_speech_dataset.num_feature_bins
audio_featurizer = deep_speech_dataset.audio_featurizer
feature_normalize = deep_speech_dataset.config.audio_config.normalize
text_featurizer = deep_speech_dataset.text_featurizer
def _gen_data():
"""Dataset generator function."""
for audio_file, _, transcript in data_entries:
features = _preprocess_audio(
audio_file, audio_featurizer, feature_normalize)
labels = featurizer.compute_label_feature(
transcript, text_featurizer.token_to_index)
input_length = [features.shape[0]]
label_length = [len(labels)]
# Yield a tuple of (features, labels) where features is a dict containing
# all info about the actual data features.
yield (
{
"features": features,
"input_length": input_length,
"label_length": label_length
},
labels)
dataset = tf.data.Dataset.from_generator(
_gen_data,
output_types=(
{
"features": tf.float32,
"input_length": tf.int32,
"label_length": tf.int32
},
tf.int32),
output_shapes=(
{
"features": tf.TensorShape([None, num_feature_bins, 1]),
"input_length": tf.TensorShape([1]),
"label_length": tf.TensorShape([1])
},
tf.TensorShape([None]))
)
# Repeat and batch the dataset
dataset = dataset.repeat(repeat)
# Padding the features to its max length dimensions.
dataset = dataset.padded_batch(
batch_size=batch_size,
padded_shapes=(
{
"features": tf.TensorShape([None, num_feature_bins, 1]),
"input_length": tf.TensorShape([1]),
"label_length": tf.TensorShape([1])
},
tf.TensorShape([None]))
)
# Prefetch to improve speed of input pipeline.
dataset = dataset.prefetch(buffer_size=tf.data.experimental.AUTOTUNE)
return dataset
|