File size: 9,449 Bytes
97b6013
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
#  Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
# ==============================================================================
"""Generate tf.data.Dataset object for deep speech training/evaluation."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import math
import random
# pylint: disable=g-bad-import-order
import numpy as np
from six.moves import xrange  # pylint: disable=redefined-builtin
import soundfile
import tensorflow as tf
# pylint: enable=g-bad-import-order

import data.featurizer as featurizer  # pylint: disable=g-bad-import-order


class AudioConfig(object):
  """Configs for spectrogram extraction from audio."""

  def __init__(self,
               sample_rate,
               window_ms,
               stride_ms,
               normalize=False):
    """Initialize the AudioConfig class.

    Args:
      sample_rate: an integer denoting the sample rate of the input waveform.
      window_ms: an integer for the length of a spectrogram frame, in ms.
      stride_ms: an integer for the frame stride, in ms.
      normalize: a boolean for whether apply normalization on the audio feature.
    """

    self.sample_rate = sample_rate
    self.window_ms = window_ms
    self.stride_ms = stride_ms
    self.normalize = normalize


class DatasetConfig(object):
  """Config class for generating the DeepSpeechDataset."""

  def __init__(self, audio_config, data_path, vocab_file_path, sortagrad):
    """Initialize the configs for deep speech dataset.

    Args:
      audio_config: AudioConfig object specifying the audio-related configs.
      data_path: a string denoting the full path of a manifest file.
      vocab_file_path: a string specifying the vocabulary file path.
      sortagrad: a boolean, if set to true, audio sequences will be fed by
                increasing length in the first training epoch, which will
                expedite network convergence.

    Raises:
      RuntimeError: file path not exist.
    """

    self.audio_config = audio_config
    assert tf.gfile.Exists(data_path)
    assert tf.gfile.Exists(vocab_file_path)
    self.data_path = data_path
    self.vocab_file_path = vocab_file_path
    self.sortagrad = sortagrad


def _normalize_audio_feature(audio_feature):
  """Perform mean and variance normalization on the spectrogram feature.

  Args:
    audio_feature: a numpy array for the spectrogram feature.

  Returns:
    a numpy array of the normalized spectrogram.
  """
  mean = np.mean(audio_feature, axis=0)
  var = np.var(audio_feature, axis=0)
  normalized = (audio_feature - mean) / (np.sqrt(var) + 1e-6)

  return normalized


def _preprocess_audio(audio_file_path, audio_featurizer, normalize):
  """Load the audio file and compute spectrogram feature."""
  data, _ = soundfile.read(audio_file_path)
  feature = featurizer.compute_spectrogram_feature(
      data, audio_featurizer.sample_rate, audio_featurizer.stride_ms,
      audio_featurizer.window_ms)
  # Feature normalization
  if normalize:
    feature = _normalize_audio_feature(feature)

  # Adding Channel dimension for conv2D input.
  feature = np.expand_dims(feature, axis=2)
  return feature


def _preprocess_data(file_path):
  """Generate a list of tuples (wav_filename, wav_filesize, transcript).

  Each dataset file contains three columns: "wav_filename", "wav_filesize",
  and "transcript". This function parses the csv file and stores each example
  by the increasing order of audio length (indicated by wav_filesize).
  AS the waveforms are ordered in increasing length, audio samples in a
  mini-batch have similar length.

  Args:
    file_path: a string specifying the csv file path for a dataset.

  Returns:
    A list of tuples (wav_filename, wav_filesize, transcript) sorted by
    file_size.
  """
  tf.logging.info("Loading data set {}".format(file_path))
  with tf.gfile.Open(file_path, "r") as f:
    lines = f.read().splitlines()
  # Skip the csv header in lines[0].
  lines = lines[1:]
  # The metadata file is tab separated.
  lines = [line.split("\t", 2) for line in lines]
  # Sort input data by the length of audio sequence.
  lines.sort(key=lambda item: int(item[1]))

  return [tuple(line) for line in lines]


class DeepSpeechDataset(object):
  """Dataset class for training/evaluation of DeepSpeech model."""

  def __init__(self, dataset_config):
    """Initialize the DeepSpeechDataset class.

    Args:
      dataset_config: DatasetConfig object.
    """
    self.config = dataset_config
    # Instantiate audio feature extractor.
    self.audio_featurizer = featurizer.AudioFeaturizer(
        sample_rate=self.config.audio_config.sample_rate,
        window_ms=self.config.audio_config.window_ms,
        stride_ms=self.config.audio_config.stride_ms)
    # Instantiate text feature extractor.
    self.text_featurizer = featurizer.TextFeaturizer(
        vocab_file=self.config.vocab_file_path)

    self.speech_labels = self.text_featurizer.speech_labels
    self.entries = _preprocess_data(self.config.data_path)
    # The generated spectrogram will have 161 feature bins.
    self.num_feature_bins = 161


def batch_wise_dataset_shuffle(entries, epoch_index, sortagrad, batch_size):
  """Batch-wise shuffling of the data entries.

  Each data entry is in the format of (audio_file, file_size, transcript).
  If epoch_index is 0 and sortagrad is true, we don't perform shuffling and
  return entries in sorted file_size order. Otherwise, do batch_wise shuffling.

  Args:
    entries: a list of data entries.
    epoch_index: an integer of epoch index
    sortagrad: a boolean to control whether sorting the audio in the first
      training epoch.
    batch_size: an integer for the batch size.

  Returns:
    The shuffled data entries.
  """
  shuffled_entries = []
  if epoch_index == 0 and sortagrad:
    # No need to shuffle.
    shuffled_entries = entries
  else:
    # Shuffle entries batch-wise.
    max_buckets = int(math.floor(len(entries) / batch_size))
    total_buckets = [i for i in xrange(max_buckets)]
    random.shuffle(total_buckets)
    shuffled_entries = []
    for i in total_buckets:
      shuffled_entries.extend(entries[i * batch_size : (i + 1) * batch_size])
    # If the last batch doesn't contain enough batch_size examples,
    # just append it to the shuffled_entries.
    shuffled_entries.extend(entries[max_buckets * batch_size:])

  return shuffled_entries


def input_fn(batch_size, deep_speech_dataset, repeat=1):
  """Input function for model training and evaluation.

  Args:
    batch_size: an integer denoting the size of a batch.
    deep_speech_dataset: DeepSpeechDataset object.
    repeat: an integer for how many times to repeat the dataset.

  Returns:
    a tf.data.Dataset object for model to consume.
  """
  # Dataset properties
  data_entries = deep_speech_dataset.entries
  num_feature_bins = deep_speech_dataset.num_feature_bins
  audio_featurizer = deep_speech_dataset.audio_featurizer
  feature_normalize = deep_speech_dataset.config.audio_config.normalize
  text_featurizer = deep_speech_dataset.text_featurizer

  def _gen_data():
    """Dataset generator function."""
    for audio_file, _, transcript in data_entries:
      features = _preprocess_audio(
          audio_file, audio_featurizer, feature_normalize)
      labels = featurizer.compute_label_feature(
          transcript, text_featurizer.token_to_index)
      input_length = [features.shape[0]]
      label_length = [len(labels)]
      # Yield a tuple of (features, labels) where features is a dict containing
      # all info about the actual data features.
      yield (
          {
              "features": features,
              "input_length": input_length,
              "label_length": label_length
          },
          labels)

  dataset = tf.data.Dataset.from_generator(
      _gen_data,
      output_types=(
          {
              "features": tf.float32,
              "input_length": tf.int32,
              "label_length": tf.int32
          },
          tf.int32),
      output_shapes=(
          {
              "features": tf.TensorShape([None, num_feature_bins, 1]),
              "input_length": tf.TensorShape([1]),
              "label_length": tf.TensorShape([1])
          },
          tf.TensorShape([None]))
  )

  # Repeat and batch the dataset
  dataset = dataset.repeat(repeat)

  # Padding the features to its max length dimensions.
  dataset = dataset.padded_batch(
      batch_size=batch_size,
      padded_shapes=(
          {
              "features": tf.TensorShape([None, num_feature_bins, 1]),
              "input_length": tf.TensorShape([1]),
              "label_length": tf.TensorShape([1])
          },
          tf.TensorShape([None]))
  )

  # Prefetch to improve speed of input pipeline.
  dataset = dataset.prefetch(buffer_size=tf.data.experimental.AUTOTUNE)
  return dataset