Spaces:
Building
Building
File size: 12,195 Bytes
97b6013 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 |
# Lint as: python2, python3
# Copyright 2018 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Wrapper for providing semantic segmentaion data.
The SegmentationDataset class provides both images and annotations (semantic
segmentation and/or instance segmentation) for TensorFlow. Currently, we
support the following datasets:
1. PASCAL VOC 2012 (http://host.robots.ox.ac.uk/pascal/VOC/voc2012/).
PASCAL VOC 2012 semantic segmentation dataset annotates 20 foreground objects
(e.g., bike, person, and so on) and leaves all the other semantic classes as
one background class. The dataset contains 1464, 1449, and 1456 annotated
images for the training, validation and test respectively.
2. Cityscapes dataset (https://www.cityscapes-dataset.com)
The Cityscapes dataset contains 19 semantic labels (such as road, person, car,
and so on) for urban street scenes.
3. ADE20K dataset (http://groups.csail.mit.edu/vision/datasets/ADE20K)
The ADE20K dataset contains 150 semantic labels both urban street scenes and
indoor scenes.
References:
M. Everingham, S. M. A. Eslami, L. V. Gool, C. K. I. Williams, J. Winn,
and A. Zisserman, The pascal visual object classes challenge a retrospective.
IJCV, 2014.
M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson,
U. Franke, S. Roth, and B. Schiele, "The cityscapes dataset for semantic urban
scene understanding," In Proc. of CVPR, 2016.
B. Zhou, H. Zhao, X. Puig, S. Fidler, A. Barriuso, A. Torralba, "Scene Parsing
through ADE20K dataset", In Proc. of CVPR, 2017.
"""
import collections
import os
import tensorflow as tf
from deeplab import common
from deeplab import input_preprocess
# Named tuple to describe the dataset properties.
DatasetDescriptor = collections.namedtuple(
'DatasetDescriptor',
[
'splits_to_sizes', # Splits of the dataset into training, val and test.
'num_classes', # Number of semantic classes, including the
# background class (if exists). For example, there
# are 20 foreground classes + 1 background class in
# the PASCAL VOC 2012 dataset. Thus, we set
# num_classes=21.
'ignore_label', # Ignore label value.
])
_CITYSCAPES_INFORMATION = DatasetDescriptor(
splits_to_sizes={'train_fine': 2975,
'train_coarse': 22973,
'trainval_fine': 3475,
'trainval_coarse': 23473,
'val_fine': 500,
'test_fine': 1525},
num_classes=19,
ignore_label=255,
)
_PASCAL_VOC_SEG_INFORMATION = DatasetDescriptor(
splits_to_sizes={
'train': 1464,
'train_aug': 10582,
'trainval': 2913,
'val': 1449,
},
num_classes=21,
ignore_label=255,
)
_ADE20K_INFORMATION = DatasetDescriptor(
splits_to_sizes={
'train': 20210, # num of samples in images/training
'val': 2000, # num of samples in images/validation
},
num_classes=151,
ignore_label=0,
)
_DATASETS_INFORMATION = {
'cityscapes': _CITYSCAPES_INFORMATION,
'pascal_voc_seg': _PASCAL_VOC_SEG_INFORMATION,
'ade20k': _ADE20K_INFORMATION,
}
# Default file pattern of TFRecord of TensorFlow Example.
_FILE_PATTERN = '%s-*'
def get_cityscapes_dataset_name():
return 'cityscapes'
class Dataset(object):
"""Represents input dataset for deeplab model."""
def __init__(self,
dataset_name,
split_name,
dataset_dir,
batch_size,
crop_size,
min_resize_value=None,
max_resize_value=None,
resize_factor=None,
min_scale_factor=1.,
max_scale_factor=1.,
scale_factor_step_size=0,
model_variant=None,
num_readers=1,
is_training=False,
should_shuffle=False,
should_repeat=False):
"""Initializes the dataset.
Args:
dataset_name: Dataset name.
split_name: A train/val Split name.
dataset_dir: The directory of the dataset sources.
batch_size: Batch size.
crop_size: The size used to crop the image and label.
min_resize_value: Desired size of the smaller image side.
max_resize_value: Maximum allowed size of the larger image side.
resize_factor: Resized dimensions are multiple of factor plus one.
min_scale_factor: Minimum scale factor value.
max_scale_factor: Maximum scale factor value.
scale_factor_step_size: The step size from min scale factor to max scale
factor. The input is randomly scaled based on the value of
(min_scale_factor, max_scale_factor, scale_factor_step_size).
model_variant: Model variant (string) for choosing how to mean-subtract
the images. See feature_extractor.network_map for supported model
variants.
num_readers: Number of readers for data provider.
is_training: Boolean, if dataset is for training or not.
should_shuffle: Boolean, if should shuffle the input data.
should_repeat: Boolean, if should repeat the input data.
Raises:
ValueError: Dataset name and split name are not supported.
"""
if dataset_name not in _DATASETS_INFORMATION:
raise ValueError('The specified dataset is not supported yet.')
self.dataset_name = dataset_name
splits_to_sizes = _DATASETS_INFORMATION[dataset_name].splits_to_sizes
if split_name not in splits_to_sizes:
raise ValueError('data split name %s not recognized' % split_name)
if model_variant is None:
tf.logging.warning('Please specify a model_variant. See '
'feature_extractor.network_map for supported model '
'variants.')
self.split_name = split_name
self.dataset_dir = dataset_dir
self.batch_size = batch_size
self.crop_size = crop_size
self.min_resize_value = min_resize_value
self.max_resize_value = max_resize_value
self.resize_factor = resize_factor
self.min_scale_factor = min_scale_factor
self.max_scale_factor = max_scale_factor
self.scale_factor_step_size = scale_factor_step_size
self.model_variant = model_variant
self.num_readers = num_readers
self.is_training = is_training
self.should_shuffle = should_shuffle
self.should_repeat = should_repeat
self.num_of_classes = _DATASETS_INFORMATION[self.dataset_name].num_classes
self.ignore_label = _DATASETS_INFORMATION[self.dataset_name].ignore_label
def _parse_function(self, example_proto):
"""Function to parse the example proto.
Args:
example_proto: Proto in the format of tf.Example.
Returns:
A dictionary with parsed image, label, height, width and image name.
Raises:
ValueError: Label is of wrong shape.
"""
# Currently only supports jpeg and png.
# Need to use this logic because the shape is not known for
# tf.image.decode_image and we rely on this info to
# extend label if necessary.
def _decode_image(content, channels):
return tf.cond(
tf.image.is_jpeg(content),
lambda: tf.image.decode_jpeg(content, channels),
lambda: tf.image.decode_png(content, channels))
features = {
'image/encoded':
tf.FixedLenFeature((), tf.string, default_value=''),
'image/filename':
tf.FixedLenFeature((), tf.string, default_value=''),
'image/format':
tf.FixedLenFeature((), tf.string, default_value='jpeg'),
'image/height':
tf.FixedLenFeature((), tf.int64, default_value=0),
'image/width':
tf.FixedLenFeature((), tf.int64, default_value=0),
'image/segmentation/class/encoded':
tf.FixedLenFeature((), tf.string, default_value=''),
'image/segmentation/class/format':
tf.FixedLenFeature((), tf.string, default_value='png'),
}
parsed_features = tf.parse_single_example(example_proto, features)
image = _decode_image(parsed_features['image/encoded'], channels=3)
label = None
if self.split_name != common.TEST_SET:
label = _decode_image(
parsed_features['image/segmentation/class/encoded'], channels=1)
image_name = parsed_features['image/filename']
if image_name is None:
image_name = tf.constant('')
sample = {
common.IMAGE: image,
common.IMAGE_NAME: image_name,
common.HEIGHT: parsed_features['image/height'],
common.WIDTH: parsed_features['image/width'],
}
if label is not None:
if label.get_shape().ndims == 2:
label = tf.expand_dims(label, 2)
elif label.get_shape().ndims == 3 and label.shape.dims[2] == 1:
pass
else:
raise ValueError('Input label shape must be [height, width], or '
'[height, width, 1].')
label.set_shape([None, None, 1])
sample[common.LABELS_CLASS] = label
return sample
def _preprocess_image(self, sample):
"""Preprocesses the image and label.
Args:
sample: A sample containing image and label.
Returns:
sample: Sample with preprocessed image and label.
Raises:
ValueError: Ground truth label not provided during training.
"""
image = sample[common.IMAGE]
label = sample[common.LABELS_CLASS]
original_image, image, label = input_preprocess.preprocess_image_and_label(
image=image,
label=label,
crop_height=self.crop_size[0],
crop_width=self.crop_size[1],
min_resize_value=self.min_resize_value,
max_resize_value=self.max_resize_value,
resize_factor=self.resize_factor,
min_scale_factor=self.min_scale_factor,
max_scale_factor=self.max_scale_factor,
scale_factor_step_size=self.scale_factor_step_size,
ignore_label=self.ignore_label,
is_training=self.is_training,
model_variant=self.model_variant)
sample[common.IMAGE] = image
if not self.is_training:
# Original image is only used during visualization.
sample[common.ORIGINAL_IMAGE] = original_image
if label is not None:
sample[common.LABEL] = label
# Remove common.LABEL_CLASS key in the sample since it is only used to
# derive label and not used in training and evaluation.
sample.pop(common.LABELS_CLASS, None)
return sample
def get_one_shot_iterator(self):
"""Gets an iterator that iterates across the dataset once.
Returns:
An iterator of type tf.data.Iterator.
"""
files = self._get_all_files()
dataset = (
tf.data.TFRecordDataset(files, num_parallel_reads=self.num_readers)
.map(self._parse_function, num_parallel_calls=self.num_readers)
.map(self._preprocess_image, num_parallel_calls=self.num_readers))
if self.should_shuffle:
dataset = dataset.shuffle(buffer_size=100)
if self.should_repeat:
dataset = dataset.repeat() # Repeat forever for training.
else:
dataset = dataset.repeat(1)
dataset = dataset.batch(self.batch_size).prefetch(self.batch_size)
return dataset.make_one_shot_iterator()
def _get_all_files(self):
"""Gets all the files to read data from.
Returns:
A list of input files.
"""
file_pattern = _FILE_PATTERN
file_pattern = os.path.join(self.dataset_dir,
file_pattern % self.split_name)
return tf.gfile.Glob(file_pattern)
|