File size: 10,446 Bytes
97b6013
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
# Lint as: python2, python3
# Copyright 2019 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Implementation of the Panoptic Quality metric.

Panoptic Quality is an instance-based metric for evaluating the task of
image parsing, aka panoptic segmentation.

Please see the paper for details:
"Panoptic Segmentation", Alexander Kirillov, Kaiming He, Ross Girshick,
Carsten Rother and Piotr Dollar. arXiv:1801.00868, 2018.
"""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import collections
import numpy as np
import prettytable
import six

from deeplab.evaluation import base_metric


def _ids_to_counts(id_array):
  """Given a numpy array, a mapping from each unique entry to its count."""
  ids, counts = np.unique(id_array, return_counts=True)
  return dict(six.moves.zip(ids, counts))


class PanopticQuality(base_metric.SegmentationMetric):
  """Metric class for Panoptic Quality.

  "Panoptic Segmentation" by Alexander Kirillov, Kaiming He, Ross Girshick,
  Carsten Rother, Piotr Dollar.
  https://arxiv.org/abs/1801.00868
  """

  def compare_and_accumulate(
      self, groundtruth_category_array, groundtruth_instance_array,
      predicted_category_array, predicted_instance_array):
    """See base class."""
    # First, combine the category and instance labels so that every unique
    # value for (category, instance) is assigned a unique integer label.
    pred_segment_id = self._naively_combine_labels(predicted_category_array,
                                                   predicted_instance_array)
    gt_segment_id = self._naively_combine_labels(groundtruth_category_array,
                                                 groundtruth_instance_array)

    # Pre-calculate areas for all groundtruth and predicted segments.
    gt_segment_areas = _ids_to_counts(gt_segment_id)
    pred_segment_areas = _ids_to_counts(pred_segment_id)

    # We assume there is only one void segment and it has instance id = 0.
    void_segment_id = self.ignored_label * self.max_instances_per_category

    # There may be other ignored groundtruth segments with instance id > 0, find
    # those ids using the unique segment ids extracted with the area computation
    # above.
    ignored_segment_ids = {
        gt_segment_id for gt_segment_id in six.iterkeys(gt_segment_areas)
        if (gt_segment_id //
            self.max_instances_per_category) == self.ignored_label
    }

    # Next, combine the groundtruth and predicted labels. Dividing up the pixels
    # based on which groundtruth segment and which predicted segment they belong
    # to, this will assign a different 32-bit integer label to each choice
    # of (groundtruth segment, predicted segment), encoded as
    #   gt_segment_id * offset + pred_segment_id.
    intersection_id_array = (
        gt_segment_id.astype(np.uint32) * self.offset +
        pred_segment_id.astype(np.uint32))

    # For every combination of (groundtruth segment, predicted segment) with a
    # non-empty intersection, this counts the number of pixels in that
    # intersection.
    intersection_areas = _ids_to_counts(intersection_id_array)

    # Helper function that computes the area of the overlap between a predicted
    # segment and the ground-truth void/ignored segment.
    def prediction_void_overlap(pred_segment_id):
      void_intersection_id = void_segment_id * self.offset + pred_segment_id
      return intersection_areas.get(void_intersection_id, 0)

    # Compute overall ignored overlap.
    def prediction_ignored_overlap(pred_segment_id):
      total_ignored_overlap = 0
      for ignored_segment_id in ignored_segment_ids:
        intersection_id = ignored_segment_id * self.offset + pred_segment_id
        total_ignored_overlap += intersection_areas.get(intersection_id, 0)
      return total_ignored_overlap

    # Sets that are populated with which segments groundtruth/predicted segments
    # have been matched with overlapping predicted/groundtruth segments
    # respectively.
    gt_matched = set()
    pred_matched = set()

    # Calculate IoU per pair of intersecting segments of the same category.
    for intersection_id, intersection_area in six.iteritems(intersection_areas):
      gt_segment_id = intersection_id // self.offset
      pred_segment_id = intersection_id % self.offset

      gt_category = gt_segment_id // self.max_instances_per_category
      pred_category = pred_segment_id // self.max_instances_per_category
      if gt_category != pred_category:
        continue

      # Union between the groundtruth and predicted segments being compared does
      # not include the portion of the predicted segment that consists of
      # groundtruth "void" pixels.
      union = (
          gt_segment_areas[gt_segment_id] +
          pred_segment_areas[pred_segment_id] - intersection_area -
          prediction_void_overlap(pred_segment_id))
      iou = intersection_area / union
      if iou > 0.5:
        self.tp_per_class[gt_category] += 1
        self.iou_per_class[gt_category] += iou
        gt_matched.add(gt_segment_id)
        pred_matched.add(pred_segment_id)

    # Count false negatives for each category.
    for gt_segment_id in six.iterkeys(gt_segment_areas):
      if gt_segment_id in gt_matched:
        continue
      category = gt_segment_id // self.max_instances_per_category
      # Failing to detect a void segment is not a false negative.
      if category == self.ignored_label:
        continue
      self.fn_per_class[category] += 1

    # Count false positives for each category.
    for pred_segment_id in six.iterkeys(pred_segment_areas):
      if pred_segment_id in pred_matched:
        continue
      # A false positive is not penalized if is mostly ignored in the
      # groundtruth.
      if (prediction_ignored_overlap(pred_segment_id) /
          pred_segment_areas[pred_segment_id]) > 0.5:
        continue
      category = pred_segment_id // self.max_instances_per_category
      self.fp_per_class[category] += 1

    return self.result()

  def _valid_categories(self):
    """Categories with a "valid" value for the metric, have > 0 instances.

    We will ignore the `ignore_label` class and other classes which have
    `tp + fn + fp = 0`.

    Returns:
      Boolean array of shape `[num_categories]`.
    """
    valid_categories = np.not_equal(
        self.tp_per_class + self.fn_per_class + self.fp_per_class, 0)
    if self.ignored_label >= 0 and self.ignored_label < self.num_categories:
      valid_categories[self.ignored_label] = False
    return valid_categories

  def detailed_results(self, is_thing=None):
    """See base class."""
    valid_categories = self._valid_categories()

    # If known, break down which categories are valid _and_ things/stuff.
    category_sets = collections.OrderedDict()
    category_sets['All'] = valid_categories
    if is_thing is not None:
      category_sets['Things'] = np.logical_and(valid_categories, is_thing)
      category_sets['Stuff'] = np.logical_and(valid_categories,
                                              np.logical_not(is_thing))

    # Compute individual per-class metrics that constitute factors of PQ.
    sq = base_metric.realdiv_maybe_zero(self.iou_per_class, self.tp_per_class)
    rq = base_metric.realdiv_maybe_zero(
        self.tp_per_class,
        self.tp_per_class + 0.5 * self.fn_per_class + 0.5 * self.fp_per_class)
    pq = np.multiply(sq, rq)

    # Assemble detailed results dictionary.
    results = {}
    for category_set_name, in_category_set in six.iteritems(category_sets):
      if np.any(in_category_set):
        results[category_set_name] = {
            'pq': np.mean(pq[in_category_set]),
            'sq': np.mean(sq[in_category_set]),
            'rq': np.mean(rq[in_category_set]),
            # The number of categories in this subset.
            'n': np.sum(in_category_set.astype(np.int32)),
        }
      else:
        results[category_set_name] = {'pq': 0, 'sq': 0, 'rq': 0, 'n': 0}

    return results

  def result_per_category(self):
    """See base class."""
    sq = base_metric.realdiv_maybe_zero(self.iou_per_class, self.tp_per_class)
    rq = base_metric.realdiv_maybe_zero(
        self.tp_per_class,
        self.tp_per_class + 0.5 * self.fn_per_class + 0.5 * self.fp_per_class)
    return np.multiply(sq, rq)

  def print_detailed_results(self, is_thing=None, print_digits=3):
    """See base class."""
    results = self.detailed_results(is_thing=is_thing)

    tab = prettytable.PrettyTable()

    tab.add_column('', [], align='l')
    for fieldname in ['PQ', 'SQ', 'RQ', 'N']:
      tab.add_column(fieldname, [], align='r')

    for category_set, subset_results in six.iteritems(results):
      data_cols = [
          round(subset_results[col_key], print_digits) * 100
          for col_key in ['pq', 'sq', 'rq']
      ]
      data_cols += [subset_results['n']]
      tab.add_row([category_set] + data_cols)

    print(tab)

  def result(self):
    """See base class."""
    pq_per_class = self.result_per_category()
    valid_categories = self._valid_categories()
    if not np.any(valid_categories):
      return 0.
    return np.mean(pq_per_class[valid_categories])

  def merge(self, other_instance):
    """See base class."""
    self.iou_per_class += other_instance.iou_per_class
    self.tp_per_class += other_instance.tp_per_class
    self.fn_per_class += other_instance.fn_per_class
    self.fp_per_class += other_instance.fp_per_class

  def reset(self):
    """See base class."""
    self.iou_per_class = np.zeros(self.num_categories, dtype=np.float64)
    self.tp_per_class = np.zeros(self.num_categories, dtype=np.float64)
    self.fn_per_class = np.zeros(self.num_categories, dtype=np.float64)
    self.fp_per_class = np.zeros(self.num_categories, dtype=np.float64)