File size: 10,411 Bytes
97b6013 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 |
# Copyright 2016 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Domain Adaptation Loss Functions.
The following domain adaptation loss functions are defined:
- Maximum Mean Discrepancy (MMD).
Relevant paper:
Gretton, Arthur, et al.,
"A kernel two-sample test."
The Journal of Machine Learning Research, 2012
- Correlation Loss on a batch.
"""
from functools import partial
import tensorflow as tf
import grl_op_grads # pylint: disable=unused-import
import grl_op_shapes # pylint: disable=unused-import
import grl_ops
import utils
slim = tf.contrib.slim
################################################################################
# SIMILARITY LOSS
################################################################################
def maximum_mean_discrepancy(x, y, kernel=utils.gaussian_kernel_matrix):
r"""Computes the Maximum Mean Discrepancy (MMD) of two samples: x and y.
Maximum Mean Discrepancy (MMD) is a distance-measure between the samples of
the distributions of x and y. Here we use the kernel two sample estimate
using the empirical mean of the two distributions.
MMD^2(P, Q) = || \E{\phi(x)} - \E{\phi(y)} ||^2
= \E{ K(x, x) } + \E{ K(y, y) } - 2 \E{ K(x, y) },
where K = <\phi(x), \phi(y)>,
is the desired kernel function, in this case a radial basis kernel.
Args:
x: a tensor of shape [num_samples, num_features]
y: a tensor of shape [num_samples, num_features]
kernel: a function which computes the kernel in MMD. Defaults to the
GaussianKernelMatrix.
Returns:
a scalar denoting the squared maximum mean discrepancy loss.
"""
with tf.name_scope('MaximumMeanDiscrepancy'):
# \E{ K(x, x) } + \E{ K(y, y) } - 2 \E{ K(x, y) }
cost = tf.reduce_mean(kernel(x, x))
cost += tf.reduce_mean(kernel(y, y))
cost -= 2 * tf.reduce_mean(kernel(x, y))
# We do not allow the loss to become negative.
cost = tf.where(cost > 0, cost, 0, name='value')
return cost
def mmd_loss(source_samples, target_samples, weight, scope=None):
"""Adds a similarity loss term, the MMD between two representations.
This Maximum Mean Discrepancy (MMD) loss is calculated with a number of
different Gaussian kernels.
Args:
source_samples: a tensor of shape [num_samples, num_features].
target_samples: a tensor of shape [num_samples, num_features].
weight: the weight of the MMD loss.
scope: optional name scope for summary tags.
Returns:
a scalar tensor representing the MMD loss value.
"""
sigmas = [
1e-6, 1e-5, 1e-4, 1e-3, 1e-2, 1e-1, 1, 5, 10, 15, 20, 25, 30, 35, 100,
1e3, 1e4, 1e5, 1e6
]
gaussian_kernel = partial(
utils.gaussian_kernel_matrix, sigmas=tf.constant(sigmas))
loss_value = maximum_mean_discrepancy(
source_samples, target_samples, kernel=gaussian_kernel)
loss_value = tf.maximum(1e-4, loss_value) * weight
assert_op = tf.Assert(tf.is_finite(loss_value), [loss_value])
with tf.control_dependencies([assert_op]):
tag = 'MMD Loss'
if scope:
tag = scope + tag
tf.summary.scalar(tag, loss_value)
tf.losses.add_loss(loss_value)
return loss_value
def correlation_loss(source_samples, target_samples, weight, scope=None):
"""Adds a similarity loss term, the correlation between two representations.
Args:
source_samples: a tensor of shape [num_samples, num_features]
target_samples: a tensor of shape [num_samples, num_features]
weight: a scalar weight for the loss.
scope: optional name scope for summary tags.
Returns:
a scalar tensor representing the correlation loss value.
"""
with tf.name_scope('corr_loss'):
source_samples -= tf.reduce_mean(source_samples, 0)
target_samples -= tf.reduce_mean(target_samples, 0)
source_samples = tf.nn.l2_normalize(source_samples, 1)
target_samples = tf.nn.l2_normalize(target_samples, 1)
source_cov = tf.matmul(tf.transpose(source_samples), source_samples)
target_cov = tf.matmul(tf.transpose(target_samples), target_samples)
corr_loss = tf.reduce_mean(tf.square(source_cov - target_cov)) * weight
assert_op = tf.Assert(tf.is_finite(corr_loss), [corr_loss])
with tf.control_dependencies([assert_op]):
tag = 'Correlation Loss'
if scope:
tag = scope + tag
tf.summary.scalar(tag, corr_loss)
tf.losses.add_loss(corr_loss)
return corr_loss
def dann_loss(source_samples, target_samples, weight, scope=None):
"""Adds the domain adversarial (DANN) loss.
Args:
source_samples: a tensor of shape [num_samples, num_features].
target_samples: a tensor of shape [num_samples, num_features].
weight: the weight of the loss.
scope: optional name scope for summary tags.
Returns:
a scalar tensor representing the correlation loss value.
"""
with tf.variable_scope('dann'):
batch_size = tf.shape(source_samples)[0]
samples = tf.concat(axis=0, values=[source_samples, target_samples])
samples = slim.flatten(samples)
domain_selection_mask = tf.concat(
axis=0, values=[tf.zeros((batch_size, 1)), tf.ones((batch_size, 1))])
# Perform the gradient reversal and be careful with the shape.
grl = grl_ops.gradient_reversal(samples)
grl = tf.reshape(grl, (-1, samples.get_shape().as_list()[1]))
grl = slim.fully_connected(grl, 100, scope='fc1')
logits = slim.fully_connected(grl, 1, activation_fn=None, scope='fc2')
domain_predictions = tf.sigmoid(logits)
domain_loss = tf.losses.log_loss(
domain_selection_mask, domain_predictions, weights=weight)
domain_accuracy = utils.accuracy(
tf.round(domain_predictions), domain_selection_mask)
assert_op = tf.Assert(tf.is_finite(domain_loss), [domain_loss])
with tf.control_dependencies([assert_op]):
tag_loss = 'losses/domain_loss'
tag_accuracy = 'losses/domain_accuracy'
if scope:
tag_loss = scope + tag_loss
tag_accuracy = scope + tag_accuracy
tf.summary.scalar(tag_loss, domain_loss)
tf.summary.scalar(tag_accuracy, domain_accuracy)
return domain_loss
################################################################################
# DIFFERENCE LOSS
################################################################################
def difference_loss(private_samples, shared_samples, weight=1.0, name=''):
"""Adds the difference loss between the private and shared representations.
Args:
private_samples: a tensor of shape [num_samples, num_features].
shared_samples: a tensor of shape [num_samples, num_features].
weight: the weight of the incoherence loss.
name: the name of the tf summary.
"""
private_samples -= tf.reduce_mean(private_samples, 0)
shared_samples -= tf.reduce_mean(shared_samples, 0)
private_samples = tf.nn.l2_normalize(private_samples, 1)
shared_samples = tf.nn.l2_normalize(shared_samples, 1)
correlation_matrix = tf.matmul(
private_samples, shared_samples, transpose_a=True)
cost = tf.reduce_mean(tf.square(correlation_matrix)) * weight
cost = tf.where(cost > 0, cost, 0, name='value')
tf.summary.scalar('losses/Difference Loss {}'.format(name),
cost)
assert_op = tf.Assert(tf.is_finite(cost), [cost])
with tf.control_dependencies([assert_op]):
tf.losses.add_loss(cost)
################################################################################
# TASK LOSS
################################################################################
def log_quaternion_loss_batch(predictions, labels, params):
"""A helper function to compute the error between quaternions.
Args:
predictions: A Tensor of size [batch_size, 4].
labels: A Tensor of size [batch_size, 4].
params: A dictionary of parameters. Expecting 'use_logging', 'batch_size'.
Returns:
A Tensor of size [batch_size], denoting the error between the quaternions.
"""
use_logging = params['use_logging']
assertions = []
if use_logging:
assertions.append(
tf.Assert(
tf.reduce_all(
tf.less(
tf.abs(tf.reduce_sum(tf.square(predictions), [1]) - 1),
1e-4)),
['The l2 norm of each prediction quaternion vector should be 1.']))
assertions.append(
tf.Assert(
tf.reduce_all(
tf.less(
tf.abs(tf.reduce_sum(tf.square(labels), [1]) - 1), 1e-4)),
['The l2 norm of each label quaternion vector should be 1.']))
with tf.control_dependencies(assertions):
product = tf.multiply(predictions, labels)
internal_dot_products = tf.reduce_sum(product, [1])
if use_logging:
internal_dot_products = tf.Print(
internal_dot_products,
[internal_dot_products, tf.shape(internal_dot_products)],
'internal_dot_products:')
logcost = tf.log(1e-4 + 1 - tf.abs(internal_dot_products))
return logcost
def log_quaternion_loss(predictions, labels, params):
"""A helper function to compute the mean error between batches of quaternions.
The caller is expected to add the loss to the graph.
Args:
predictions: A Tensor of size [batch_size, 4].
labels: A Tensor of size [batch_size, 4].
params: A dictionary of parameters. Expecting 'use_logging', 'batch_size'.
Returns:
A Tensor of size 1, denoting the mean error between batches of quaternions.
"""
use_logging = params['use_logging']
logcost = log_quaternion_loss_batch(predictions, labels, params)
logcost = tf.reduce_sum(logcost, [0])
batch_size = params['batch_size']
logcost = tf.multiply(logcost, 1.0 / batch_size, name='log_quaternion_loss')
if use_logging:
logcost = tf.Print(
logcost, [logcost], '[logcost]', name='log_quaternion_loss_print')
return logcost
|