File size: 16,217 Bytes
97b6013
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
# Copyright 2016 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Contains different architectures for the different DSN parts.

We define here the modules that can be used in the different parts of the DSN
model.
- shared encoder (dsn_cropped_linemod, dann_xxxx)
- private encoder (default_encoder)
- decoder (large_decoder, gtsrb_decoder, small_decoder)
"""
import tensorflow as tf

#from models.domain_adaptation.domain_separation
import utils

slim = tf.contrib.slim


def default_batch_norm_params(is_training=False):
  """Returns default batch normalization parameters for DSNs.

  Args:
    is_training: whether or not the model is training.

  Returns:
    a dictionary that maps batch norm parameter names (strings) to values.
  """
  return {
      # Decay for the moving averages.
      'decay': 0.5,
      # epsilon to prevent 0s in variance.
      'epsilon': 0.001,
      'is_training': is_training
  }


################################################################################
# PRIVATE ENCODERS
################################################################################
def default_encoder(images, code_size, batch_norm_params=None,
                    weight_decay=0.0):
  """Encodes the given images to codes of the given size.

  Args:
    images: a tensor of size [batch_size, height, width, 1].
    code_size: the number of hidden units in the code layer of the classifier.
    batch_norm_params: a dictionary that maps batch norm parameter names to
      values.
    weight_decay: the value for the weight decay coefficient.

  Returns:
    end_points: the code of the input.
  """
  end_points = {}
  with slim.arg_scope(
      [slim.conv2d, slim.fully_connected],
      weights_regularizer=slim.l2_regularizer(weight_decay),
      activation_fn=tf.nn.relu,
      normalizer_fn=slim.batch_norm,
      normalizer_params=batch_norm_params):
    with slim.arg_scope([slim.conv2d], kernel_size=[5, 5], padding='SAME'):
      net = slim.conv2d(images, 32, scope='conv1')
      net = slim.max_pool2d(net, [2, 2], 2, scope='pool1')
      net = slim.conv2d(net, 64, scope='conv2')
      net = slim.max_pool2d(net, [2, 2], 2, scope='pool2')

      net = slim.flatten(net)
      end_points['flatten'] = net
      net = slim.fully_connected(net, code_size, scope='fc1')
      end_points['fc3'] = net
  return end_points


################################################################################
# DECODERS
################################################################################
def large_decoder(codes,
                  height,
                  width,
                  channels,
                  batch_norm_params=None,
                  weight_decay=0.0):
  """Decodes the codes to a fixed output size.

  Args:
    codes: a tensor of size [batch_size, code_size].
    height: the height of the output images.
    width: the width of the output images.
    channels: the number of the output channels.
    batch_norm_params: a dictionary that maps batch norm parameter names to
      values.
    weight_decay: the value for the weight decay coefficient.

  Returns:
    recons: the reconstruction tensor of shape [batch_size, height, width, 3].
  """
  with slim.arg_scope(
      [slim.conv2d, slim.fully_connected],
      weights_regularizer=slim.l2_regularizer(weight_decay),
      activation_fn=tf.nn.relu,
      normalizer_fn=slim.batch_norm,
      normalizer_params=batch_norm_params):
    net = slim.fully_connected(codes, 600, scope='fc1')
    batch_size = net.get_shape().as_list()[0]
    net = tf.reshape(net, [batch_size, 10, 10, 6])

    net = slim.conv2d(net, 32, [5, 5], scope='conv1_1')

    net = tf.image.resize_nearest_neighbor(net, (16, 16))

    net = slim.conv2d(net, 32, [5, 5], scope='conv2_1')

    net = tf.image.resize_nearest_neighbor(net, (32, 32))

    net = slim.conv2d(net, 32, [5, 5], scope='conv3_2')

    output_size = [height, width]
    net = tf.image.resize_nearest_neighbor(net, output_size)

    with slim.arg_scope([slim.conv2d], kernel_size=[3, 3]):
      net = slim.conv2d(net, channels, activation_fn=None, scope='conv4_1')

  return net


def gtsrb_decoder(codes,
                  height,
                  width,
                  channels,
                  batch_norm_params=None,
                  weight_decay=0.0):
  """Decodes the codes to a fixed output size. This decoder is specific to GTSRB

  Args:
    codes: a tensor of size [batch_size, 100].
    height: the height of the output images.
    width: the width of the output images.
    channels: the number of the output channels.
    batch_norm_params: a dictionary that maps batch norm parameter names to
      values.
    weight_decay: the value for the weight decay coefficient.

  Returns:
    recons: the reconstruction tensor of shape [batch_size, height, width, 3].

  Raises:
    ValueError: When the input code size is not 100.
  """
  batch_size, code_size = codes.get_shape().as_list()
  if code_size != 100:
    raise ValueError('The code size used as an input to the GTSRB decoder is '
                     'expected to be 100.')

  with slim.arg_scope(
      [slim.conv2d, slim.fully_connected],
      weights_regularizer=slim.l2_regularizer(weight_decay),
      activation_fn=tf.nn.relu,
      normalizer_fn=slim.batch_norm,
      normalizer_params=batch_norm_params):
    net = codes
    net = tf.reshape(net, [batch_size, 10, 10, 1])
    net = slim.conv2d(net, 32, [3, 3], scope='conv1_1')

    # First upsampling 20x20
    net = tf.image.resize_nearest_neighbor(net, [20, 20])

    net = slim.conv2d(net, 32, [3, 3], scope='conv2_1')

    output_size = [height, width]
    # Final upsampling 40 x 40
    net = tf.image.resize_nearest_neighbor(net, output_size)

    with slim.arg_scope([slim.conv2d], kernel_size=[3, 3]):
      net = slim.conv2d(net, 16, scope='conv3_1')
      net = slim.conv2d(net, channels, activation_fn=None, scope='conv3_2')

  return net


def small_decoder(codes,
                  height,
                  width,
                  channels,
                  batch_norm_params=None,
                  weight_decay=0.0):
  """Decodes the codes to a fixed output size.

  Args:
    codes: a tensor of size [batch_size, code_size].
    height: the height of the output images.
    width: the width of the output images.
    channels: the number of the output channels.
    batch_norm_params: a dictionary that maps batch norm parameter names to
      values.
    weight_decay: the value for the weight decay coefficient.

  Returns:
    recons: the reconstruction tensor of shape [batch_size, height, width, 3].
  """
  with slim.arg_scope(
      [slim.conv2d, slim.fully_connected],
      weights_regularizer=slim.l2_regularizer(weight_decay),
      activation_fn=tf.nn.relu,
      normalizer_fn=slim.batch_norm,
      normalizer_params=batch_norm_params):
    net = slim.fully_connected(codes, 300, scope='fc1')
    batch_size = net.get_shape().as_list()[0]
    net = tf.reshape(net, [batch_size, 10, 10, 3])

    net = slim.conv2d(net, 16, [3, 3], scope='conv1_1')
    net = slim.conv2d(net, 16, [3, 3], scope='conv1_2')

    output_size = [height, width]
    net = tf.image.resize_nearest_neighbor(net, output_size)

    with slim.arg_scope([slim.conv2d], kernel_size=[3, 3]):
      net = slim.conv2d(net, 16, scope='conv2_1')
      net = slim.conv2d(net, channels, activation_fn=None, scope='conv2_2')

  return net


################################################################################
# SHARED ENCODERS
################################################################################
def dann_mnist(images,
               weight_decay=0.0,
               prefix='model',
               num_classes=10,
               **kwargs):
  """Creates a convolution MNIST model.

  Note that this model implements the architecture for MNIST proposed in:
   Y. Ganin et al., Domain-Adversarial Training of Neural Networks (DANN),
   JMLR 2015

  Args:
    images: the MNIST digits, a tensor of size [batch_size, 28, 28, 1].
    weight_decay: the value for the weight decay coefficient.
    prefix: name of the model to use when prefixing tags.
    num_classes: the number of output classes to use.
    **kwargs: Placeholder for keyword arguments used by other shared encoders.

  Returns:
    the output logits, a tensor of size [batch_size, num_classes].
    a dictionary with key/values the layer names and tensors.
  """
  end_points = {}

  with slim.arg_scope(
      [slim.conv2d, slim.fully_connected],
      weights_regularizer=slim.l2_regularizer(weight_decay),
      activation_fn=tf.nn.relu,):
    with slim.arg_scope([slim.conv2d], padding='SAME'):
      end_points['conv1'] = slim.conv2d(images, 32, [5, 5], scope='conv1')
      end_points['pool1'] = slim.max_pool2d(
          end_points['conv1'], [2, 2], 2, scope='pool1')
      end_points['conv2'] = slim.conv2d(
          end_points['pool1'], 48, [5, 5], scope='conv2')
      end_points['pool2'] = slim.max_pool2d(
          end_points['conv2'], [2, 2], 2, scope='pool2')
      end_points['fc3'] = slim.fully_connected(
          slim.flatten(end_points['pool2']), 100, scope='fc3')
      end_points['fc4'] = slim.fully_connected(
          slim.flatten(end_points['fc3']), 100, scope='fc4')

  logits = slim.fully_connected(
      end_points['fc4'], num_classes, activation_fn=None, scope='fc5')

  return logits, end_points


def dann_svhn(images,
              weight_decay=0.0,
              prefix='model',
              num_classes=10,
              **kwargs):
  """Creates the convolutional SVHN model.

  Note that this model implements the architecture for MNIST proposed in:
   Y. Ganin et al., Domain-Adversarial Training of Neural Networks (DANN),
   JMLR 2015

  Args:
    images: the SVHN digits, a tensor of size [batch_size, 32, 32, 3].
    weight_decay: the value for the weight decay coefficient.
    prefix: name of the model to use when prefixing tags.
    num_classes: the number of output classes to use.
    **kwargs: Placeholder for keyword arguments used by other shared encoders.

  Returns:
    the output logits, a tensor of size [batch_size, num_classes].
    a dictionary with key/values the layer names and tensors.
  """

  end_points = {}

  with slim.arg_scope(
      [slim.conv2d, slim.fully_connected],
      weights_regularizer=slim.l2_regularizer(weight_decay),
      activation_fn=tf.nn.relu,):
    with slim.arg_scope([slim.conv2d], padding='SAME'):

      end_points['conv1'] = slim.conv2d(images, 64, [5, 5], scope='conv1')
      end_points['pool1'] = slim.max_pool2d(
          end_points['conv1'], [3, 3], 2, scope='pool1')
      end_points['conv2'] = slim.conv2d(
          end_points['pool1'], 64, [5, 5], scope='conv2')
      end_points['pool2'] = slim.max_pool2d(
          end_points['conv2'], [3, 3], 2, scope='pool2')
      end_points['conv3'] = slim.conv2d(
          end_points['pool2'], 128, [5, 5], scope='conv3')

      end_points['fc3'] = slim.fully_connected(
          slim.flatten(end_points['conv3']), 3072, scope='fc3')
      end_points['fc4'] = slim.fully_connected(
          slim.flatten(end_points['fc3']), 2048, scope='fc4')

  logits = slim.fully_connected(
      end_points['fc4'], num_classes, activation_fn=None, scope='fc5')

  return logits, end_points


def dann_gtsrb(images,
               weight_decay=0.0,
               prefix='model',
               num_classes=43,
               **kwargs):
  """Creates the convolutional GTSRB model.

  Note that this model implements the architecture for MNIST proposed in:
   Y. Ganin et al., Domain-Adversarial Training of Neural Networks (DANN),
   JMLR 2015

  Args:
    images: the GTSRB images, a tensor of size [batch_size, 40, 40, 3].
    weight_decay: the value for the weight decay coefficient.
    prefix: name of the model to use when prefixing tags.
    num_classes: the number of output classes to use.
    **kwargs: Placeholder for keyword arguments used by other shared encoders.

  Returns:
    the output logits, a tensor of size [batch_size, num_classes].
    a dictionary with key/values the layer names and tensors.
  """

  end_points = {}

  with slim.arg_scope(
      [slim.conv2d, slim.fully_connected],
      weights_regularizer=slim.l2_regularizer(weight_decay),
      activation_fn=tf.nn.relu,):
    with slim.arg_scope([slim.conv2d], padding='SAME'):

      end_points['conv1'] = slim.conv2d(images, 96, [5, 5], scope='conv1')
      end_points['pool1'] = slim.max_pool2d(
          end_points['conv1'], [2, 2], 2, scope='pool1')
      end_points['conv2'] = slim.conv2d(
          end_points['pool1'], 144, [3, 3], scope='conv2')
      end_points['pool2'] = slim.max_pool2d(
          end_points['conv2'], [2, 2], 2, scope='pool2')
      end_points['conv3'] = slim.conv2d(
          end_points['pool2'], 256, [5, 5], scope='conv3')
      end_points['pool3'] = slim.max_pool2d(
          end_points['conv3'], [2, 2], 2, scope='pool3')

      end_points['fc3'] = slim.fully_connected(
          slim.flatten(end_points['pool3']), 512, scope='fc3')

  logits = slim.fully_connected(
      end_points['fc3'], num_classes, activation_fn=None, scope='fc4')

  return logits, end_points


def dsn_cropped_linemod(images,
                        weight_decay=0.0,
                        prefix='model',
                        num_classes=11,
                        batch_norm_params=None,
                        is_training=False):
  """Creates the convolutional pose estimation model for Cropped Linemod.

  Args:
    images: the Cropped Linemod samples, a tensor of size
      [batch_size, 64, 64, 4].
    weight_decay: the value for the weight decay coefficient.
    prefix: name of the model to use when prefixing tags.
    num_classes: the number of output classes to use.
    batch_norm_params: a dictionary that maps batch norm parameter names to
      values.
    is_training: specifies whether or not we're currently training the model.
      This variable will determine the behaviour of the dropout layer.

  Returns:
    the output logits, a tensor of size [batch_size, num_classes].
    a dictionary with key/values the layer names and tensors.
  """

  end_points = {}

  tf.summary.image('{}/input_images'.format(prefix), images)
  with slim.arg_scope(
      [slim.conv2d, slim.fully_connected],
      weights_regularizer=slim.l2_regularizer(weight_decay),
      activation_fn=tf.nn.relu,
      normalizer_fn=slim.batch_norm if batch_norm_params else None,
      normalizer_params=batch_norm_params):
    with slim.arg_scope([slim.conv2d], padding='SAME'):
      end_points['conv1'] = slim.conv2d(images, 32, [5, 5], scope='conv1')
      end_points['pool1'] = slim.max_pool2d(
          end_points['conv1'], [2, 2], 2, scope='pool1')
      end_points['conv2'] = slim.conv2d(
          end_points['pool1'], 64, [5, 5], scope='conv2')
      end_points['pool2'] = slim.max_pool2d(
          end_points['conv2'], [2, 2], 2, scope='pool2')
      net = slim.flatten(end_points['pool2'])
      end_points['fc3'] = slim.fully_connected(net, 128, scope='fc3')
      net = slim.dropout(
          end_points['fc3'], 0.5, is_training=is_training, scope='dropout')

      with tf.variable_scope('quaternion_prediction'):
        predicted_quaternion = slim.fully_connected(
            net, 4, activation_fn=tf.nn.tanh)
        predicted_quaternion = tf.nn.l2_normalize(predicted_quaternion, 1)
      logits = slim.fully_connected(
          net, num_classes, activation_fn=None, scope='fc4')
  end_points['quaternion_pred'] = predicted_quaternion

  return logits, end_points