File size: 29,026 Bytes
97b6013 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 |
# Copyright 2018 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""A UVF agent.
"""
import tensorflow as tf
import gin.tf
from agents import ddpg_agent
# pylint: disable=unused-import
import cond_fn
from utils import utils as uvf_utils
from context import gin_imports
# pylint: enable=unused-import
slim = tf.contrib.slim
@gin.configurable
class UvfAgentCore(object):
"""Defines basic functions for UVF agent. Must be inherited with an RL agent.
Used as lower-level agent.
"""
def __init__(self,
observation_spec,
action_spec,
tf_env,
tf_context,
step_cond_fn=cond_fn.env_transition,
reset_episode_cond_fn=cond_fn.env_restart,
reset_env_cond_fn=cond_fn.false_fn,
metrics=None,
**base_agent_kwargs):
"""Constructs a UVF agent.
Args:
observation_spec: A TensorSpec defining the observations.
action_spec: A BoundedTensorSpec defining the actions.
tf_env: A Tensorflow environment object.
tf_context: A Context class.
step_cond_fn: A function indicating whether to increment the num of steps.
reset_episode_cond_fn: A function indicating whether to restart the
episode, resampling the context.
reset_env_cond_fn: A function indicating whether to perform a manual reset
of the environment.
metrics: A list of functions that evaluate metrics of the agent.
**base_agent_kwargs: A dictionary of parameters for base RL Agent.
Raises:
ValueError: If 'dqda_clipping' is < 0.
"""
self._step_cond_fn = step_cond_fn
self._reset_episode_cond_fn = reset_episode_cond_fn
self._reset_env_cond_fn = reset_env_cond_fn
self.metrics = metrics
# expose tf_context methods
self.tf_context = tf_context(tf_env=tf_env)
self.set_replay = self.tf_context.set_replay
self.sample_contexts = self.tf_context.sample_contexts
self.compute_rewards = self.tf_context.compute_rewards
self.gamma_index = self.tf_context.gamma_index
self.context_specs = self.tf_context.context_specs
self.context_as_action_specs = self.tf_context.context_as_action_specs
self.init_context_vars = self.tf_context.create_vars
self.env_observation_spec = observation_spec[0]
merged_observation_spec = (uvf_utils.merge_specs(
(self.env_observation_spec,) + self.context_specs),)
self._context_vars = dict()
self._action_vars = dict()
self.BASE_AGENT_CLASS.__init__(
self,
observation_spec=merged_observation_spec,
action_spec=action_spec,
**base_agent_kwargs
)
def set_meta_agent(self, agent=None):
self._meta_agent = agent
@property
def meta_agent(self):
return self._meta_agent
def actor_loss(self, states, actions, rewards, discounts,
next_states):
"""Returns the next action for the state.
Args:
state: A [num_state_dims] tensor representing a state.
context: A list of [num_context_dims] tensor representing a context.
Returns:
A [num_action_dims] tensor representing the action.
"""
return self.BASE_AGENT_CLASS.actor_loss(self, states)
def action(self, state, context=None):
"""Returns the next action for the state.
Args:
state: A [num_state_dims] tensor representing a state.
context: A list of [num_context_dims] tensor representing a context.
Returns:
A [num_action_dims] tensor representing the action.
"""
merged_state = self.merged_state(state, context)
return self.BASE_AGENT_CLASS.action(self, merged_state)
def actions(self, state, context=None):
"""Returns the next action for the state.
Args:
state: A [-1, num_state_dims] tensor representing a state.
context: A list of [-1, num_context_dims] tensor representing a context.
Returns:
A [-1, num_action_dims] tensor representing the action.
"""
merged_states = self.merged_states(state, context)
return self.BASE_AGENT_CLASS.actor_net(self, merged_states)
def log_probs(self, states, actions, state_reprs, contexts=None):
assert contexts is not None
batch_dims = [tf.shape(states)[0], tf.shape(states)[1]]
contexts = self.tf_context.context_multi_transition_fn(
contexts, states=tf.to_float(state_reprs))
flat_states = tf.reshape(states,
[batch_dims[0] * batch_dims[1], states.shape[-1]])
flat_contexts = [tf.reshape(tf.cast(context, states.dtype),
[batch_dims[0] * batch_dims[1], context.shape[-1]])
for context in contexts]
flat_pred_actions = self.actions(flat_states, flat_contexts)
pred_actions = tf.reshape(flat_pred_actions,
batch_dims + [flat_pred_actions.shape[-1]])
error = tf.square(actions - pred_actions)
spec_range = (self._action_spec.maximum - self._action_spec.minimum) / 2
normalized_error = tf.cast(error, tf.float64) / tf.constant(spec_range) ** 2
return -normalized_error
@gin.configurable('uvf_add_noise_fn')
def add_noise_fn(self, action_fn, stddev=1.0, debug=False,
clip=True, global_step=None):
"""Returns the action_fn with additive Gaussian noise.
Args:
action_fn: A callable(`state`, `context`) which returns a
[num_action_dims] tensor representing a action.
stddev: stddev for the Ornstein-Uhlenbeck noise.
debug: Print debug messages.
Returns:
A [num_action_dims] action tensor.
"""
if global_step is not None:
stddev *= tf.maximum( # Decay exploration during training.
tf.train.exponential_decay(1.0, global_step, 1e6, 0.8), 0.5)
def noisy_action_fn(state, context=None):
"""Noisy action fn."""
action = action_fn(state, context)
if debug:
action = uvf_utils.tf_print(
action, [action],
message='[add_noise_fn] pre-noise action',
first_n=100)
noise_dist = tf.distributions.Normal(tf.zeros_like(action),
tf.ones_like(action) * stddev)
noise = noise_dist.sample()
action += noise
if debug:
action = uvf_utils.tf_print(
action, [action],
message='[add_noise_fn] post-noise action',
first_n=100)
if clip:
action = uvf_utils.clip_to_spec(action, self._action_spec)
return action
return noisy_action_fn
def merged_state(self, state, context=None):
"""Returns the merged state from the environment state and contexts.
Args:
state: A [num_state_dims] tensor representing a state.
context: A list of [num_context_dims] tensor representing a context.
If None, use the internal context.
Returns:
A [num_merged_state_dims] tensor representing the merged state.
"""
if context is None:
context = list(self.context_vars)
state = tf.concat([state,] + context, axis=-1)
self._validate_states(self._batch_state(state))
return state
def merged_states(self, states, contexts=None):
"""Returns the batch merged state from the batch env state and contexts.
Args:
states: A [batch_size, num_state_dims] tensor representing a batch
of states.
contexts: A list of [batch_size, num_context_dims] tensor
representing a batch of contexts. If None,
use the internal context.
Returns:
A [batch_size, num_merged_state_dims] tensor representing the batch
of merged states.
"""
if contexts is None:
contexts = [tf.tile(tf.expand_dims(context, axis=0),
(tf.shape(states)[0], 1)) for
context in self.context_vars]
states = tf.concat([states,] + contexts, axis=-1)
self._validate_states(states)
return states
def unmerged_states(self, merged_states):
"""Returns the batch state and contexts from the batch merged state.
Args:
merged_states: A [batch_size, num_merged_state_dims] tensor
representing a batch of merged states.
Returns:
A [batch_size, num_state_dims] tensor and a list of
[batch_size, num_context_dims] tensors representing the batch state
and contexts respectively.
"""
self._validate_states(merged_states)
num_state_dims = self.env_observation_spec.shape.as_list()[0]
num_context_dims_list = [c.shape.as_list()[0] for c in self.context_specs]
states = merged_states[:, :num_state_dims]
contexts = []
i = num_state_dims
for num_context_dims in num_context_dims_list:
contexts.append(merged_states[:, i: i+num_context_dims])
i += num_context_dims
return states, contexts
def sample_random_actions(self, batch_size=1):
"""Return random actions.
Args:
batch_size: Batch size.
Returns:
A [batch_size, num_action_dims] tensor representing the batch of actions.
"""
actions = tf.concat(
[
tf.random_uniform(
shape=(batch_size, 1),
minval=self._action_spec.minimum[i],
maxval=self._action_spec.maximum[i])
for i in range(self._action_spec.shape[0].value)
],
axis=1)
return actions
def clip_actions(self, actions):
"""Clip actions to spec.
Args:
actions: A [batch_size, num_action_dims] tensor representing
the batch of actions.
Returns:
A [batch_size, num_action_dims] tensor representing the batch
of clipped actions.
"""
actions = tf.concat(
[
tf.clip_by_value(
actions[:, i:i+1],
self._action_spec.minimum[i],
self._action_spec.maximum[i])
for i in range(self._action_spec.shape[0].value)
],
axis=1)
return actions
def mix_contexts(self, contexts, insert_contexts, indices):
"""Mix two contexts based on indices.
Args:
contexts: A list of [batch_size, num_context_dims] tensor representing
the batch of contexts.
insert_contexts: A list of [batch_size, num_context_dims] tensor
representing the batch of contexts to be inserted.
indices: A list of a list of integers denoting indices to replace.
Returns:
A list of resulting contexts.
"""
if indices is None: indices = [[]] * len(contexts)
assert len(contexts) == len(indices)
assert all([spec.shape.ndims == 1 for spec in self.context_specs])
mix_contexts = []
for contexts_, insert_contexts_, indices_, spec in zip(
contexts, insert_contexts, indices, self.context_specs):
mix_contexts.append(
tf.concat(
[
insert_contexts_[:, i:i + 1] if i in indices_ else
contexts_[:, i:i + 1] for i in range(spec.shape.as_list()[0])
],
axis=1))
return mix_contexts
def begin_episode_ops(self, mode, action_fn=None, state=None):
"""Returns ops that reset agent at beginning of episodes.
Args:
mode: a string representing the mode=[train, explore, eval].
Returns:
A list of ops.
"""
all_ops = []
for _, action_var in sorted(self._action_vars.items()):
sample_action = self.sample_random_actions(1)[0]
all_ops.append(tf.assign(action_var, sample_action))
all_ops += self.tf_context.reset(mode=mode, agent=self._meta_agent,
action_fn=action_fn, state=state)
return all_ops
def cond_begin_episode_op(self, cond, input_vars, mode, meta_action_fn):
"""Returns op that resets agent at beginning of episodes.
A new episode is begun if the cond op evalues to `False`.
Args:
cond: a Boolean tensor variable.
input_vars: A list of tensor variables.
mode: a string representing the mode=[train, explore, eval].
Returns:
Conditional begin op.
"""
(state, action, reward, next_state,
state_repr, next_state_repr) = input_vars
def continue_fn():
"""Continue op fn."""
items = [state, action, reward, next_state,
state_repr, next_state_repr] + list(self.context_vars)
batch_items = [tf.expand_dims(item, 0) for item in items]
(states, actions, rewards, next_states,
state_reprs, next_state_reprs) = batch_items[:6]
context_reward = self.compute_rewards(
mode, state_reprs, actions, rewards, next_state_reprs,
batch_items[6:])[0][0]
context_reward = tf.cast(context_reward, dtype=reward.dtype)
if self.meta_agent is not None:
meta_action = tf.concat(self.context_vars, -1)
items = [state, meta_action, reward, next_state,
state_repr, next_state_repr] + list(self.meta_agent.context_vars)
batch_items = [tf.expand_dims(item, 0) for item in items]
(states, meta_actions, rewards, next_states,
state_reprs, next_state_reprs) = batch_items[:6]
meta_reward = self.meta_agent.compute_rewards(
mode, states, meta_actions, rewards,
next_states, batch_items[6:])[0][0]
meta_reward = tf.cast(meta_reward, dtype=reward.dtype)
else:
meta_reward = tf.constant(0, dtype=reward.dtype)
with tf.control_dependencies([context_reward, meta_reward]):
step_ops = self.tf_context.step(mode=mode, agent=self._meta_agent,
state=state,
next_state=next_state,
state_repr=state_repr,
next_state_repr=next_state_repr,
action_fn=meta_action_fn)
with tf.control_dependencies(step_ops):
context_reward, meta_reward = map(tf.identity, [context_reward, meta_reward])
return context_reward, meta_reward
def begin_episode_fn():
"""Begin op fn."""
begin_ops = self.begin_episode_ops(mode=mode, action_fn=meta_action_fn, state=state)
with tf.control_dependencies(begin_ops):
return tf.zeros_like(reward), tf.zeros_like(reward)
with tf.control_dependencies(input_vars):
cond_begin_episode_op = tf.cond(cond, continue_fn, begin_episode_fn)
return cond_begin_episode_op
def get_env_base_wrapper(self, env_base, **begin_kwargs):
"""Create a wrapper around env_base, with agent-specific begin/end_episode.
Args:
env_base: A python environment base.
**begin_kwargs: Keyword args for begin_episode_ops.
Returns:
An object with begin_episode() and end_episode().
"""
begin_ops = self.begin_episode_ops(**begin_kwargs)
return uvf_utils.get_contextual_env_base(env_base, begin_ops)
def init_action_vars(self, name, i=None):
"""Create and return a tensorflow Variable holding an action.
Args:
name: Name of the variables.
i: Integer id.
Returns:
A [num_action_dims] tensor.
"""
if i is not None:
name += '_%d' % i
assert name not in self._action_vars, ('Conflict! %s is already '
'initialized.') % name
self._action_vars[name] = tf.Variable(
self.sample_random_actions(1)[0], name='%s_action' % (name))
self._validate_actions(tf.expand_dims(self._action_vars[name], 0))
return self._action_vars[name]
@gin.configurable('uvf_critic_function')
def critic_function(self, critic_vals, states, critic_fn=None):
"""Computes q values based on outputs from the critic net.
Args:
critic_vals: A tf.float32 [batch_size, ...] tensor representing outputs
from the critic net.
states: A [batch_size, num_state_dims] tensor representing a batch
of states.
critic_fn: A callable that process outputs from critic_net and
outputs a [batch_size] tensor representing q values.
Returns:
A tf.float32 [batch_size] tensor representing q values.
"""
if critic_fn is not None:
env_states, contexts = self.unmerged_states(states)
critic_vals = critic_fn(critic_vals, env_states, contexts)
critic_vals.shape.assert_has_rank(1)
return critic_vals
def get_action_vars(self, key):
return self._action_vars[key]
def get_context_vars(self, key):
return self.tf_context.context_vars[key]
def step_cond_fn(self, *args):
return self._step_cond_fn(self, *args)
def reset_episode_cond_fn(self, *args):
return self._reset_episode_cond_fn(self, *args)
def reset_env_cond_fn(self, *args):
return self._reset_env_cond_fn(self, *args)
@property
def context_vars(self):
return self.tf_context.vars
@gin.configurable
class MetaAgentCore(UvfAgentCore):
"""Defines basic functions for UVF Meta-agent. Must be inherited with an RL agent.
Used as higher-level agent.
"""
def __init__(self,
observation_spec,
action_spec,
tf_env,
tf_context,
sub_context,
step_cond_fn=cond_fn.env_transition,
reset_episode_cond_fn=cond_fn.env_restart,
reset_env_cond_fn=cond_fn.false_fn,
metrics=None,
actions_reg=0.,
k=2,
**base_agent_kwargs):
"""Constructs a Meta agent.
Args:
observation_spec: A TensorSpec defining the observations.
action_spec: A BoundedTensorSpec defining the actions.
tf_env: A Tensorflow environment object.
tf_context: A Context class.
step_cond_fn: A function indicating whether to increment the num of steps.
reset_episode_cond_fn: A function indicating whether to restart the
episode, resampling the context.
reset_env_cond_fn: A function indicating whether to perform a manual reset
of the environment.
metrics: A list of functions that evaluate metrics of the agent.
**base_agent_kwargs: A dictionary of parameters for base RL Agent.
Raises:
ValueError: If 'dqda_clipping' is < 0.
"""
self._step_cond_fn = step_cond_fn
self._reset_episode_cond_fn = reset_episode_cond_fn
self._reset_env_cond_fn = reset_env_cond_fn
self.metrics = metrics
self._actions_reg = actions_reg
self._k = k
# expose tf_context methods
self.tf_context = tf_context(tf_env=tf_env)
self.sub_context = sub_context(tf_env=tf_env)
self.set_replay = self.tf_context.set_replay
self.sample_contexts = self.tf_context.sample_contexts
self.compute_rewards = self.tf_context.compute_rewards
self.gamma_index = self.tf_context.gamma_index
self.context_specs = self.tf_context.context_specs
self.context_as_action_specs = self.tf_context.context_as_action_specs
self.sub_context_as_action_specs = self.sub_context.context_as_action_specs
self.init_context_vars = self.tf_context.create_vars
self.env_observation_spec = observation_spec[0]
merged_observation_spec = (uvf_utils.merge_specs(
(self.env_observation_spec,) + self.context_specs),)
self._context_vars = dict()
self._action_vars = dict()
assert len(self.context_as_action_specs) == 1
self.BASE_AGENT_CLASS.__init__(
self,
observation_spec=merged_observation_spec,
action_spec=self.sub_context_as_action_specs,
**base_agent_kwargs
)
@gin.configurable('meta_add_noise_fn')
def add_noise_fn(self, action_fn, stddev=1.0, debug=False,
global_step=None):
noisy_action_fn = super(MetaAgentCore, self).add_noise_fn(
action_fn, stddev,
clip=True, global_step=global_step)
return noisy_action_fn
def actor_loss(self, states, actions, rewards, discounts,
next_states):
"""Returns the next action for the state.
Args:
state: A [num_state_dims] tensor representing a state.
context: A list of [num_context_dims] tensor representing a context.
Returns:
A [num_action_dims] tensor representing the action.
"""
actions = self.actor_net(states, stop_gradients=False)
regularizer = self._actions_reg * tf.reduce_mean(
tf.reduce_sum(tf.abs(actions[:, self._k:]), -1), 0)
loss = self.BASE_AGENT_CLASS.actor_loss(self, states)
return regularizer + loss
@gin.configurable
class UvfAgent(UvfAgentCore, ddpg_agent.TD3Agent):
"""A DDPG agent with UVF.
"""
BASE_AGENT_CLASS = ddpg_agent.TD3Agent
ACTION_TYPE = 'continuous'
def __init__(self, *args, **kwargs):
UvfAgentCore.__init__(self, *args, **kwargs)
@gin.configurable
class MetaAgent(MetaAgentCore, ddpg_agent.TD3Agent):
"""A DDPG meta-agent.
"""
BASE_AGENT_CLASS = ddpg_agent.TD3Agent
ACTION_TYPE = 'continuous'
def __init__(self, *args, **kwargs):
MetaAgentCore.__init__(self, *args, **kwargs)
@gin.configurable()
def state_preprocess_net(
states,
num_output_dims=2,
states_hidden_layers=(100,),
normalizer_fn=None,
activation_fn=tf.nn.relu,
zero_time=True,
images=False):
"""Creates a simple feed forward net for embedding states.
"""
with slim.arg_scope(
[slim.fully_connected],
activation_fn=activation_fn,
normalizer_fn=normalizer_fn,
weights_initializer=slim.variance_scaling_initializer(
factor=1.0/3.0, mode='FAN_IN', uniform=True)):
states_shape = tf.shape(states)
states_dtype = states.dtype
states = tf.to_float(states)
if images: # Zero-out x-y
states *= tf.constant([0.] * 2 + [1.] * (states.shape[-1] - 2), dtype=states.dtype)
if zero_time:
states *= tf.constant([1.] * (states.shape[-1] - 1) + [0.], dtype=states.dtype)
orig_states = states
embed = states
if states_hidden_layers:
embed = slim.stack(embed, slim.fully_connected, states_hidden_layers,
scope='states')
with slim.arg_scope([slim.fully_connected],
weights_regularizer=None,
weights_initializer=tf.random_uniform_initializer(
minval=-0.003, maxval=0.003)):
embed = slim.fully_connected(embed, num_output_dims,
activation_fn=None,
normalizer_fn=None,
scope='value')
output = embed
output = tf.cast(output, states_dtype)
return output
@gin.configurable()
def action_embed_net(
actions,
states=None,
num_output_dims=2,
hidden_layers=(400, 300),
normalizer_fn=None,
activation_fn=tf.nn.relu,
zero_time=True,
images=False):
"""Creates a simple feed forward net for embedding actions.
"""
with slim.arg_scope(
[slim.fully_connected],
activation_fn=activation_fn,
normalizer_fn=normalizer_fn,
weights_initializer=slim.variance_scaling_initializer(
factor=1.0/3.0, mode='FAN_IN', uniform=True)):
actions = tf.to_float(actions)
if states is not None:
if images: # Zero-out x-y
states *= tf.constant([0.] * 2 + [1.] * (states.shape[-1] - 2), dtype=states.dtype)
if zero_time:
states *= tf.constant([1.] * (states.shape[-1] - 1) + [0.], dtype=states.dtype)
actions = tf.concat([actions, tf.to_float(states)], -1)
embed = actions
if hidden_layers:
embed = slim.stack(embed, slim.fully_connected, hidden_layers,
scope='hidden')
with slim.arg_scope([slim.fully_connected],
weights_regularizer=None,
weights_initializer=tf.random_uniform_initializer(
minval=-0.003, maxval=0.003)):
embed = slim.fully_connected(embed, num_output_dims,
activation_fn=None,
normalizer_fn=None,
scope='value')
if num_output_dims == 1:
return embed[:, 0, ...]
else:
return embed
def huber(x, kappa=0.1):
return (0.5 * tf.square(x) * tf.to_float(tf.abs(x) <= kappa) +
kappa * (tf.abs(x) - 0.5 * kappa) * tf.to_float(tf.abs(x) > kappa)
) / kappa
@gin.configurable()
class StatePreprocess(object):
STATE_PREPROCESS_NET_SCOPE = 'state_process_net'
ACTION_EMBED_NET_SCOPE = 'action_embed_net'
def __init__(self, trainable=False,
state_preprocess_net=lambda states: states,
action_embed_net=lambda actions, *args, **kwargs: actions,
ndims=None):
self.trainable = trainable
self._scope = tf.get_variable_scope().name
self._ndims = ndims
self._state_preprocess_net = tf.make_template(
self.STATE_PREPROCESS_NET_SCOPE, state_preprocess_net,
create_scope_now_=True)
self._action_embed_net = tf.make_template(
self.ACTION_EMBED_NET_SCOPE, action_embed_net,
create_scope_now_=True)
def __call__(self, states):
batched = states.get_shape().ndims != 1
if not batched:
states = tf.expand_dims(states, 0)
embedded = self._state_preprocess_net(states)
if self._ndims is not None:
embedded = embedded[..., :self._ndims]
if not batched:
return embedded[0]
return embedded
def loss(self, states, next_states, low_actions, low_states):
batch_size = tf.shape(states)[0]
d = int(low_states.shape[1])
# Sample indices into meta-transition to train on.
probs = 0.99 ** tf.range(d, dtype=tf.float32)
probs *= tf.constant([1.0] * (d - 1) + [1.0 / (1 - 0.99)],
dtype=tf.float32)
probs /= tf.reduce_sum(probs)
index_dist = tf.distributions.Categorical(probs=probs, dtype=tf.int64)
indices = index_dist.sample(batch_size)
batch_size = tf.cast(batch_size, tf.int64)
next_indices = tf.concat(
[tf.range(batch_size, dtype=tf.int64)[:, None],
(1 + indices[:, None]) % d], -1)
new_next_states = tf.where(indices < d - 1,
tf.gather_nd(low_states, next_indices),
next_states)
next_states = new_next_states
embed1 = tf.to_float(self._state_preprocess_net(states))
embed2 = tf.to_float(self._state_preprocess_net(next_states))
action_embed = self._action_embed_net(
tf.layers.flatten(low_actions), states=states)
tau = 2.0
fn = lambda z: tau * tf.reduce_sum(huber(z), -1)
all_embed = tf.get_variable('all_embed', [1024, int(embed1.shape[-1])],
initializer=tf.zeros_initializer())
upd = all_embed.assign(tf.concat([all_embed[batch_size:], embed2], 0))
with tf.control_dependencies([upd]):
close = 1 * tf.reduce_mean(fn(embed1 + action_embed - embed2))
prior_log_probs = tf.reduce_logsumexp(
-fn((embed1 + action_embed)[:, None, :] - all_embed[None, :, :]),
axis=-1) - tf.log(tf.to_float(all_embed.shape[0]))
far = tf.reduce_mean(tf.exp(-fn((embed1 + action_embed)[1:] - embed2[:-1])
- tf.stop_gradient(prior_log_probs[1:])))
repr_log_probs = tf.stop_gradient(
-fn(embed1 + action_embed - embed2) - prior_log_probs) / tau
return close + far, repr_log_probs, indices
def get_trainable_vars(self):
return (
slim.get_trainable_variables(
uvf_utils.join_scope(self._scope, self.STATE_PREPROCESS_NET_SCOPE)) +
slim.get_trainable_variables(
uvf_utils.join_scope(self._scope, self.ACTION_EMBED_NET_SCOPE)))
@gin.configurable()
class InverseDynamics(object):
INVERSE_DYNAMICS_NET_SCOPE = 'inverse_dynamics'
def __init__(self, spec):
self._spec = spec
def sample(self, states, next_states, num_samples, orig_goals, sc=0.5):
goal_dim = orig_goals.shape[-1]
spec_range = (self._spec.maximum - self._spec.minimum) / 2 * tf.ones([goal_dim])
loc = tf.cast(next_states - states, tf.float32)[:, :goal_dim]
scale = sc * tf.tile(tf.reshape(spec_range, [1, goal_dim]),
[tf.shape(states)[0], 1])
dist = tf.distributions.Normal(loc, scale)
if num_samples == 1:
return dist.sample()
samples = tf.concat([dist.sample(num_samples - 2),
tf.expand_dims(loc, 0),
tf.expand_dims(orig_goals, 0)], 0)
return uvf_utils.clip_to_spec(samples, self._spec)
|