File size: 11,239 Bytes
97b6013 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 |
# Copyright 2018 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""A circular buffer where each element is a list of tensors.
Each element of the buffer is a list of tensors. An example use case is a replay
buffer in reinforcement learning, where each element is a list of tensors
representing the state, action, reward etc.
New elements are added sequentially, and once the buffer is full, we
start overwriting them in a circular fashion. Reading does not remove any
elements, only adding new elements does.
"""
import collections
import numpy as np
import tensorflow as tf
import gin.tf
@gin.configurable
class CircularBuffer(object):
"""A circular buffer where each element is a list of tensors."""
def __init__(self, buffer_size=1000, scope='replay_buffer'):
"""Circular buffer of list of tensors.
Args:
buffer_size: (integer) maximum number of tensor lists the buffer can hold.
scope: (string) variable scope for creating the variables.
"""
self._buffer_size = np.int64(buffer_size)
self._scope = scope
self._tensors = collections.OrderedDict()
with tf.variable_scope(self._scope):
self._num_adds = tf.Variable(0, dtype=tf.int64, name='num_adds')
self._num_adds_cs = tf.CriticalSection(name='num_adds')
@property
def buffer_size(self):
return self._buffer_size
@property
def scope(self):
return self._scope
@property
def num_adds(self):
return self._num_adds
def _create_variables(self, tensors):
with tf.variable_scope(self._scope):
for name in tensors.keys():
tensor = tensors[name]
self._tensors[name] = tf.get_variable(
name='BufferVariable_' + name,
shape=[self._buffer_size] + tensor.get_shape().as_list(),
dtype=tensor.dtype,
trainable=False)
def _validate(self, tensors):
"""Validate shapes of tensors."""
if len(tensors) != len(self._tensors):
raise ValueError('Expected tensors to have %d elements. Received %d '
'instead.' % (len(self._tensors), len(tensors)))
if self._tensors.keys() != tensors.keys():
raise ValueError('The keys of tensors should be the always the same.'
'Received %s instead %s.' %
(tensors.keys(), self._tensors.keys()))
for name, tensor in tensors.items():
if tensor.get_shape().as_list() != self._tensors[
name].get_shape().as_list()[1:]:
raise ValueError('Tensor %s has incorrect shape.' % name)
if not tensor.dtype.is_compatible_with(self._tensors[name].dtype):
raise ValueError(
'Tensor %s has incorrect data type. Expected %s, received %s' %
(name, self._tensors[name].read_value().dtype, tensor.dtype))
def add(self, tensors):
"""Adds an element (list/tuple/dict of tensors) to the buffer.
Args:
tensors: (list/tuple/dict of tensors) to be added to the buffer.
Returns:
An add operation that adds the input `tensors` to the buffer. Similar to
an enqueue_op.
Raises:
ValueError: If the shapes and data types of input `tensors' are not the
same across calls to the add function.
"""
return self.maybe_add(tensors, True)
def maybe_add(self, tensors, condition):
"""Adds an element (tensors) to the buffer based on the condition..
Args:
tensors: (list/tuple of tensors) to be added to the buffer.
condition: A boolean Tensor controlling whether the tensors would be added
to the buffer or not.
Returns:
An add operation that adds the input `tensors` to the buffer. Similar to
an maybe_enqueue_op.
Raises:
ValueError: If the shapes and data types of input `tensors' are not the
same across calls to the add function.
"""
if not isinstance(tensors, dict):
names = [str(i) for i in range(len(tensors))]
tensors = collections.OrderedDict(zip(names, tensors))
if not isinstance(tensors, collections.OrderedDict):
tensors = collections.OrderedDict(
sorted(tensors.items(), key=lambda t: t[0]))
if not self._tensors:
self._create_variables(tensors)
else:
self._validate(tensors)
#@tf.critical_section(self._position_mutex)
def _increment_num_adds():
# Adding 0 to the num_adds variable is a trick to read the value of the
# variable and return a read-only tensor. Doing this in a critical
# section allows us to capture a snapshot of the variable that will
# not be affected by other threads updating num_adds.
return self._num_adds.assign_add(1) + 0
def _add():
num_adds_inc = self._num_adds_cs.execute(_increment_num_adds)
current_pos = tf.mod(num_adds_inc - 1, self._buffer_size)
update_ops = []
for name in self._tensors.keys():
update_ops.append(
tf.scatter_update(self._tensors[name], current_pos, tensors[name]))
return tf.group(*update_ops)
return tf.contrib.framework.smart_cond(condition, _add, tf.no_op)
def get_random_batch(self, batch_size, keys=None, num_steps=1):
"""Samples a batch of tensors from the buffer with replacement.
Args:
batch_size: (integer) number of elements to sample.
keys: List of keys of tensors to retrieve. If None retrieve all.
num_steps: (integer) length of trajectories to return. If > 1 will return
a list of lists, where each internal list represents a trajectory of
length num_steps.
Returns:
A list of tensors, where each element in the list is a batch sampled from
one of the tensors in the buffer.
Raises:
ValueError: If get_random_batch is called before calling the add function.
tf.errors.InvalidArgumentError: If this operation is executed before any
items are added to the buffer.
"""
if not self._tensors:
raise ValueError('The add function must be called before get_random_batch.')
if keys is None:
keys = self._tensors.keys()
latest_start_index = self.get_num_adds() - num_steps + 1
empty_buffer_assert = tf.Assert(
tf.greater(latest_start_index, 0),
['Not enough elements have been added to the buffer.'])
with tf.control_dependencies([empty_buffer_assert]):
max_index = tf.minimum(self._buffer_size, latest_start_index)
indices = tf.random_uniform(
[batch_size],
minval=0,
maxval=max_index,
dtype=tf.int64)
if num_steps == 1:
return self.gather(indices, keys)
else:
return self.gather_nstep(num_steps, indices, keys)
def gather(self, indices, keys=None):
"""Returns elements at the specified indices from the buffer.
Args:
indices: (list of integers or rank 1 int Tensor) indices in the buffer to
retrieve elements from.
keys: List of keys of tensors to retrieve. If None retrieve all.
Returns:
A list of tensors, where each element in the list is obtained by indexing
one of the tensors in the buffer.
Raises:
ValueError: If gather is called before calling the add function.
tf.errors.InvalidArgumentError: If indices are bigger than the number of
items in the buffer.
"""
if not self._tensors:
raise ValueError('The add function must be called before calling gather.')
if keys is None:
keys = self._tensors.keys()
with tf.name_scope('Gather'):
index_bound_assert = tf.Assert(
tf.less(
tf.to_int64(tf.reduce_max(indices)),
tf.minimum(self.get_num_adds(), self._buffer_size)),
['Index out of bounds.'])
with tf.control_dependencies([index_bound_assert]):
indices = tf.convert_to_tensor(indices)
batch = []
for key in keys:
batch.append(tf.gather(self._tensors[key], indices, name=key))
return batch
def gather_nstep(self, num_steps, indices, keys=None):
"""Returns elements at the specified indices from the buffer.
Args:
num_steps: (integer) length of trajectories to return.
indices: (list of rank num_steps int Tensor) indices in the buffer to
retrieve elements from for multiple trajectories. Each Tensor in the
list represents the indices for a trajectory.
keys: List of keys of tensors to retrieve. If None retrieve all.
Returns:
A list of list-of-tensors, where each element in the list is obtained by
indexing one of the tensors in the buffer.
Raises:
ValueError: If gather is called before calling the add function.
tf.errors.InvalidArgumentError: If indices are bigger than the number of
items in the buffer.
"""
if not self._tensors:
raise ValueError('The add function must be called before calling gather.')
if keys is None:
keys = self._tensors.keys()
with tf.name_scope('Gather'):
index_bound_assert = tf.Assert(
tf.less_equal(
tf.to_int64(tf.reduce_max(indices) + num_steps),
self.get_num_adds()),
['Trajectory indices go out of bounds.'])
with tf.control_dependencies([index_bound_assert]):
indices = tf.map_fn(
lambda x: tf.mod(tf.range(x, x + num_steps), self._buffer_size),
indices,
dtype=tf.int64)
batch = []
for key in keys:
def SampleTrajectories(trajectory_indices, key=key,
num_steps=num_steps):
trajectory_indices.set_shape([num_steps])
return tf.gather(self._tensors[key], trajectory_indices, name=key)
batch.append(tf.map_fn(SampleTrajectories, indices,
dtype=self._tensors[key].dtype))
return batch
def get_position(self):
"""Returns the position at which the last element was added.
Returns:
An int tensor representing the index at which the last element was added
to the buffer or -1 if no elements were added.
"""
return tf.cond(self.get_num_adds() < 1,
lambda: self.get_num_adds() - 1,
lambda: tf.mod(self.get_num_adds() - 1, self._buffer_size))
def get_num_adds(self):
"""Returns the number of additions to the buffer.
Returns:
An int tensor representing the number of elements that were added.
"""
def num_adds():
return self._num_adds.value()
return self._num_adds_cs.execute(num_adds)
def get_num_tensors(self):
"""Returns the number of tensors (slots) in the buffer."""
return len(self._tensors)
|