File size: 16,785 Bytes
97b6013 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 |
# Copyright 2018 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Context for Universal Value Function agents.
A context specifies a list of contextual variables, each with
own sampling and reward computation methods.
Examples of contextual variables include
goal states, reward combination vectors, etc.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import tensorflow as tf
from tf_agents import specs
import gin.tf
from utils import utils as uvf_utils
@gin.configurable
class Context(object):
"""Base context."""
VAR_NAME = 'action'
def __init__(self,
tf_env,
context_ranges=None,
context_shapes=None,
state_indices=None,
variable_indices=None,
gamma_index=None,
settable_context=False,
timers=None,
samplers=None,
reward_weights=None,
reward_fn=None,
random_sampler_mode='random',
normalizers=None,
context_transition_fn=None,
context_multi_transition_fn=None,
meta_action_every_n=None):
self._tf_env = tf_env
self.variable_indices = variable_indices
self.gamma_index = gamma_index
self._settable_context = settable_context
self.timers = timers
self._context_transition_fn = context_transition_fn
self._context_multi_transition_fn = context_multi_transition_fn
self._random_sampler_mode = random_sampler_mode
# assign specs
self._obs_spec = self._tf_env.observation_spec()
self._context_shapes = tuple([
shape if shape is not None else self._obs_spec.shape
for shape in context_shapes
])
self.context_specs = tuple([
specs.TensorSpec(dtype=self._obs_spec.dtype, shape=shape)
for shape in self._context_shapes
])
if context_ranges is not None:
self.context_ranges = context_ranges
else:
self.context_ranges = [None] * len(self._context_shapes)
self.context_as_action_specs = tuple([
specs.BoundedTensorSpec(
shape=shape,
dtype=(tf.float32 if self._obs_spec.dtype in
[tf.float32, tf.float64] else self._obs_spec.dtype),
minimum=context_range[0],
maximum=context_range[-1])
for shape, context_range in zip(self._context_shapes, self.context_ranges)
])
if state_indices is not None:
self.state_indices = state_indices
else:
self.state_indices = [None] * len(self._context_shapes)
if self.variable_indices is not None and self.n != len(
self.variable_indices):
raise ValueError(
'variable_indices (%s) must have the same length as contexts (%s).' %
(self.variable_indices, self.context_specs))
assert self.n == len(self.context_ranges)
assert self.n == len(self.state_indices)
# assign reward/sampler fns
self._sampler_fns = dict()
self._samplers = dict()
self._reward_fns = dict()
# assign reward fns
self._add_custom_reward_fns()
reward_weights = reward_weights or None
self._reward_fn = self._make_reward_fn(reward_fn, reward_weights)
# assign samplers
self._add_custom_sampler_fns()
for mode, sampler_fns in samplers.items():
self._make_sampler_fn(sampler_fns, mode)
# create normalizers
if normalizers is None:
self._normalizers = [None] * len(self.context_specs)
else:
self._normalizers = [
normalizer(tf.zeros(shape=spec.shape, dtype=spec.dtype))
if normalizer is not None else None
for normalizer, spec in zip(normalizers, self.context_specs)
]
assert self.n == len(self._normalizers)
self.meta_action_every_n = meta_action_every_n
# create vars
self.context_vars = {}
self.timer_vars = {}
self.create_vars(self.VAR_NAME)
self.t = tf.Variable(
tf.zeros(shape=(), dtype=tf.int32), name='num_timer_steps')
def _add_custom_reward_fns(self):
pass
def _add_custom_sampler_fns(self):
pass
def sample_random_contexts(self, batch_size):
"""Sample random batch contexts."""
assert self._random_sampler_mode is not None
return self.sample_contexts(self._random_sampler_mode, batch_size)[0]
def sample_contexts(self, mode, batch_size, state=None, next_state=None,
**kwargs):
"""Sample a batch of contexts.
Args:
mode: A string representing the mode [`train`, `explore`, `eval`].
batch_size: Batch size.
Returns:
Two lists of [batch_size, num_context_dims] contexts.
"""
contexts, next_contexts = self._sampler_fns[mode](
batch_size, state=state, next_state=next_state,
**kwargs)
self._validate_contexts(contexts)
self._validate_contexts(next_contexts)
return contexts, next_contexts
def compute_rewards(self, mode, states, actions, rewards, next_states,
contexts):
"""Compute context-based rewards.
Args:
mode: A string representing the mode ['uvf', 'task'].
states: A [batch_size, num_state_dims] tensor.
actions: A [batch_size, num_action_dims] tensor.
rewards: A [batch_size] tensor representing unmodified rewards.
next_states: A [batch_size, num_state_dims] tensor.
contexts: A list of [batch_size, num_context_dims] tensors.
Returns:
A [batch_size] tensor representing rewards.
"""
return self._reward_fn(states, actions, rewards, next_states,
contexts)
def _make_reward_fn(self, reward_fns_list, reward_weights):
"""Returns a fn that computes rewards.
Args:
reward_fns_list: A fn or a list of reward fns.
mode: A string representing the operating mode.
reward_weights: A list of reward weights.
"""
if not isinstance(reward_fns_list, (list, tuple)):
reward_fns_list = [reward_fns_list]
if reward_weights is None:
reward_weights = [1.0] * len(reward_fns_list)
assert len(reward_fns_list) == len(reward_weights)
reward_fns_list = [
self._custom_reward_fns[fn] if isinstance(fn, (str,)) else fn
for fn in reward_fns_list
]
def reward_fn(*args, **kwargs):
"""Returns rewards, discounts."""
reward_tuples = [
reward_fn(*args, **kwargs) for reward_fn in reward_fns_list
]
rewards_list = [reward_tuple[0] for reward_tuple in reward_tuples]
discounts_list = [reward_tuple[1] for reward_tuple in reward_tuples]
ndims = max([r.shape.ndims for r in rewards_list])
if ndims > 1: # expand reward shapes to allow broadcasting
for i in range(len(rewards_list)):
for _ in range(rewards_list[i].shape.ndims - ndims):
rewards_list[i] = tf.expand_dims(rewards_list[i], axis=-1)
for _ in range(discounts_list[i].shape.ndims - ndims):
discounts_list[i] = tf.expand_dims(discounts_list[i], axis=-1)
rewards = tf.add_n(
[r * tf.to_float(w) for r, w in zip(rewards_list, reward_weights)])
discounts = discounts_list[0]
for d in discounts_list[1:]:
discounts *= d
return rewards, discounts
return reward_fn
def _make_sampler_fn(self, sampler_cls_list, mode):
"""Returns a fn that samples a list of context vars.
Args:
sampler_cls_list: A list of sampler classes.
mode: A string representing the operating mode.
"""
if not isinstance(sampler_cls_list, (list, tuple)):
sampler_cls_list = [sampler_cls_list]
self._samplers[mode] = []
sampler_fns = []
for spec, sampler in zip(self.context_specs, sampler_cls_list):
if isinstance(sampler, (str,)):
sampler_fn = self._custom_sampler_fns[sampler]
else:
sampler_fn = sampler(context_spec=spec)
self._samplers[mode].append(sampler_fn)
sampler_fns.append(sampler_fn)
def batch_sampler_fn(batch_size, state=None, next_state=None, **kwargs):
"""Sampler fn."""
contexts_tuples = [
sampler(batch_size, state=state, next_state=next_state, **kwargs)
for sampler in sampler_fns]
contexts = [c[0] for c in contexts_tuples]
next_contexts = [c[1] for c in contexts_tuples]
contexts = [
normalizer.update_apply(c) if normalizer is not None else c
for normalizer, c in zip(self._normalizers, contexts)
]
next_contexts = [
normalizer.apply(c) if normalizer is not None else c
for normalizer, c in zip(self._normalizers, next_contexts)
]
return contexts, next_contexts
self._sampler_fns[mode] = batch_sampler_fn
def set_env_context_op(self, context, disable_unnormalizer=False):
"""Returns a TensorFlow op that sets the environment context.
Args:
context: A list of context Tensor variables.
disable_unnormalizer: Disable unnormalization.
Returns:
A TensorFlow op that sets the environment context.
"""
ret_val = np.array(1.0, dtype=np.float32)
if not self._settable_context:
return tf.identity(ret_val)
if not disable_unnormalizer:
context = [
normalizer.unapply(tf.expand_dims(c, 0))[0]
if normalizer is not None else c
for normalizer, c in zip(self._normalizers, context)
]
def set_context_func(*env_context_values):
tf.logging.info('[set_env_context_op] Setting gym environment context.')
# pylint: disable=protected-access
self.gym_env.set_context(*env_context_values)
return ret_val
# pylint: enable=protected-access
with tf.name_scope('set_env_context'):
set_op = tf.py_func(set_context_func, context, tf.float32,
name='set_env_context_py_func')
set_op.set_shape([])
return set_op
def set_replay(self, replay):
"""Set replay buffer for samplers.
Args:
replay: A replay buffer.
"""
for _, samplers in self._samplers.items():
for sampler in samplers:
sampler.set_replay(replay)
def get_clip_fns(self):
"""Returns a list of clip fns for contexts.
Returns:
A list of fns that clip context tensors.
"""
clip_fns = []
for context_range in self.context_ranges:
def clip_fn(var_, range_=context_range):
"""Clip a tensor."""
if range_ is None:
clipped_var = tf.identity(var_)
elif isinstance(range_[0], (int, long, float, list, np.ndarray)):
clipped_var = tf.clip_by_value(
var_,
range_[0],
range_[1],)
else: raise NotImplementedError(range_)
return clipped_var
clip_fns.append(clip_fn)
return clip_fns
def _validate_contexts(self, contexts):
"""Validate if contexts have right specs.
Args:
contexts: A list of [batch_size, num_context_dim] tensors.
Raises:
ValueError: If shape or dtype mismatches that of spec.
"""
for i, (context, spec) in enumerate(zip(contexts, self.context_specs)):
if context[0].shape != spec.shape:
raise ValueError('contexts[%d] has invalid shape %s wrt spec shape %s' %
(i, context[0].shape, spec.shape))
if context.dtype != spec.dtype:
raise ValueError('contexts[%d] has invalid dtype %s wrt spec dtype %s' %
(i, context.dtype, spec.dtype))
def context_multi_transition_fn(self, contexts, **kwargs):
"""Returns multiple future contexts starting from a batch."""
assert self._context_multi_transition_fn
return self._context_multi_transition_fn(contexts, None, None, **kwargs)
def step(self, mode, agent=None, action_fn=None, **kwargs):
"""Returns [next_contexts..., next_timer] list of ops.
Args:
mode: a string representing the mode=[train, explore, eval].
**kwargs: kwargs for context_transition_fn.
Returns:
a list of ops that set the context.
"""
if agent is None:
ops = []
if self._context_transition_fn is not None:
def sampler_fn():
samples = self.sample_contexts(mode, 1)[0]
return [s[0] for s in samples]
values = self._context_transition_fn(self.vars, self.t, sampler_fn, **kwargs)
ops += [tf.assign(var, value) for var, value in zip(self.vars, values)]
ops.append(tf.assign_add(self.t, 1)) # increment timer
return ops
else:
ops = agent.tf_context.step(mode, **kwargs)
state = kwargs['state']
next_state = kwargs['next_state']
state_repr = kwargs['state_repr']
next_state_repr = kwargs['next_state_repr']
with tf.control_dependencies(ops): # Step high level context before computing low level one.
# Get the context transition function output.
values = self._context_transition_fn(self.vars, self.t, None,
state=state_repr,
next_state=next_state_repr)
# Select a new goal every C steps, otherwise use context transition.
low_level_context = [
tf.cond(tf.equal(self.t % self.meta_action_every_n, 0),
lambda: tf.cast(action_fn(next_state, context=None), tf.float32),
lambda: values)]
ops = [tf.assign(var, value)
for var, value in zip(self.vars, low_level_context)]
with tf.control_dependencies(ops):
return [tf.assign_add(self.t, 1)] # increment timer
return ops
def reset(self, mode, agent=None, action_fn=None, state=None):
"""Returns ops that reset the context.
Args:
mode: a string representing the mode=[train, explore, eval].
Returns:
a list of ops that reset the context.
"""
if agent is None:
values = self.sample_contexts(mode=mode, batch_size=1)[0]
if values is None:
return []
values = [value[0] for value in values]
values[0] = uvf_utils.tf_print(
values[0],
values,
message='context:reset, mode=%s' % mode,
first_n=10,
name='context:reset:%s' % mode)
all_ops = []
for _, context_vars in sorted(self.context_vars.items()):
ops = [tf.assign(var, value) for var, value in zip(context_vars, values)]
all_ops += ops
all_ops.append(self.set_env_context_op(values))
all_ops.append(tf.assign(self.t, 0)) # reset timer
return all_ops
else:
ops = agent.tf_context.reset(mode)
# NOTE: The code is currently written in such a way that the higher level
# policy does not provide a low-level context until the second
# observation. Insead, we just zero-out low-level contexts.
for key, context_vars in sorted(self.context_vars.items()):
ops += [tf.assign(var, tf.zeros_like(var)) for var, meta_var in
zip(context_vars, agent.tf_context.context_vars[key])]
ops.append(tf.assign(self.t, 0)) # reset timer
return ops
def create_vars(self, name, agent=None):
"""Create tf variables for contexts.
Args:
name: Name of the variables.
Returns:
A list of [num_context_dims] tensors.
"""
if agent is not None:
meta_vars = agent.create_vars(name)
else:
meta_vars = {}
assert name not in self.context_vars, ('Conflict! %s is already '
'initialized.') % name
self.context_vars[name] = tuple([
tf.Variable(
tf.zeros(shape=spec.shape, dtype=spec.dtype),
name='%s_context_%d' % (name, i))
for i, spec in enumerate(self.context_specs)
])
return self.context_vars[name], meta_vars
@property
def n(self):
return len(self.context_specs)
@property
def vars(self):
return self.context_vars[self.VAR_NAME]
# pylint: disable=protected-access
@property
def gym_env(self):
return self._tf_env.pyenv._gym_env
@property
def tf_env(self):
return self._tf_env
# pylint: enable=protected-access
|