File size: 16,785 Bytes
97b6013
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
# Copyright 2018 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

"""Context for Universal Value Function agents.

A context specifies a list of contextual variables, each with
  own sampling and reward computation methods.

Examples of contextual variables include
  goal states, reward combination vectors, etc.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import tensorflow as tf
from tf_agents import specs
import gin.tf
from utils import utils as uvf_utils


@gin.configurable
class Context(object):
  """Base context."""
  VAR_NAME = 'action'

  def __init__(self,
               tf_env,
               context_ranges=None,
               context_shapes=None,
               state_indices=None,
               variable_indices=None,
               gamma_index=None,
               settable_context=False,
               timers=None,
               samplers=None,
               reward_weights=None,
               reward_fn=None,
               random_sampler_mode='random',
               normalizers=None,
               context_transition_fn=None,
               context_multi_transition_fn=None,
               meta_action_every_n=None):
    self._tf_env = tf_env
    self.variable_indices = variable_indices
    self.gamma_index = gamma_index
    self._settable_context = settable_context
    self.timers = timers
    self._context_transition_fn = context_transition_fn
    self._context_multi_transition_fn = context_multi_transition_fn
    self._random_sampler_mode = random_sampler_mode

    # assign specs
    self._obs_spec = self._tf_env.observation_spec()
    self._context_shapes = tuple([
        shape if shape is not None else self._obs_spec.shape
        for shape in context_shapes
    ])
    self.context_specs = tuple([
        specs.TensorSpec(dtype=self._obs_spec.dtype, shape=shape)
        for shape in self._context_shapes
    ])
    if context_ranges is not None:
      self.context_ranges = context_ranges
    else:
      self.context_ranges = [None] * len(self._context_shapes)

    self.context_as_action_specs = tuple([
        specs.BoundedTensorSpec(
            shape=shape,
            dtype=(tf.float32 if self._obs_spec.dtype in
                   [tf.float32, tf.float64] else self._obs_spec.dtype),
            minimum=context_range[0],
            maximum=context_range[-1])
        for shape, context_range in zip(self._context_shapes, self.context_ranges)
    ])

    if state_indices is not None:
      self.state_indices = state_indices
    else:
      self.state_indices = [None] * len(self._context_shapes)
    if self.variable_indices is not None and self.n != len(
        self.variable_indices):
      raise ValueError(
          'variable_indices (%s) must have the same length as contexts (%s).' %
          (self.variable_indices, self.context_specs))
    assert self.n == len(self.context_ranges)
    assert self.n == len(self.state_indices)

    # assign reward/sampler fns
    self._sampler_fns = dict()
    self._samplers = dict()
    self._reward_fns = dict()

    # assign reward fns
    self._add_custom_reward_fns()
    reward_weights = reward_weights or None
    self._reward_fn = self._make_reward_fn(reward_fn, reward_weights)

    # assign samplers
    self._add_custom_sampler_fns()
    for mode, sampler_fns in samplers.items():
      self._make_sampler_fn(sampler_fns, mode)

    # create normalizers
    if normalizers is None:
      self._normalizers = [None] * len(self.context_specs)
    else:
      self._normalizers = [
          normalizer(tf.zeros(shape=spec.shape, dtype=spec.dtype))
          if normalizer is not None else None
          for normalizer, spec in zip(normalizers, self.context_specs)
      ]
    assert self.n == len(self._normalizers)

    self.meta_action_every_n = meta_action_every_n

    # create vars
    self.context_vars = {}
    self.timer_vars = {}
    self.create_vars(self.VAR_NAME)
    self.t = tf.Variable(
        tf.zeros(shape=(), dtype=tf.int32), name='num_timer_steps')

  def _add_custom_reward_fns(self):
    pass

  def _add_custom_sampler_fns(self):
    pass

  def sample_random_contexts(self, batch_size):
    """Sample random batch contexts."""
    assert self._random_sampler_mode is not None
    return self.sample_contexts(self._random_sampler_mode, batch_size)[0]

  def sample_contexts(self, mode, batch_size, state=None, next_state=None,
                      **kwargs):
    """Sample a batch of contexts.

    Args:
      mode: A string representing the mode [`train`, `explore`, `eval`].
      batch_size: Batch size.
    Returns:
      Two lists of [batch_size, num_context_dims] contexts.
    """
    contexts, next_contexts = self._sampler_fns[mode](
        batch_size, state=state, next_state=next_state,
        **kwargs)
    self._validate_contexts(contexts)
    self._validate_contexts(next_contexts)
    return contexts, next_contexts

  def compute_rewards(self, mode, states, actions, rewards, next_states,
                      contexts):
    """Compute context-based rewards.

    Args:
      mode: A string representing the mode ['uvf', 'task'].
      states: A [batch_size, num_state_dims] tensor.
      actions: A [batch_size, num_action_dims] tensor.
      rewards: A [batch_size] tensor representing unmodified rewards.
      next_states: A [batch_size, num_state_dims] tensor.
      contexts: A list of [batch_size, num_context_dims] tensors.
    Returns:
      A [batch_size] tensor representing rewards.
    """
    return self._reward_fn(states, actions, rewards, next_states,
                           contexts)

  def _make_reward_fn(self, reward_fns_list, reward_weights):
    """Returns a fn that computes rewards.

    Args:
      reward_fns_list: A fn or a list of reward fns.
      mode: A string representing the operating mode.
      reward_weights: A list of reward weights.
    """
    if not isinstance(reward_fns_list, (list, tuple)):
      reward_fns_list = [reward_fns_list]
    if reward_weights is None:
      reward_weights = [1.0] * len(reward_fns_list)
    assert len(reward_fns_list) == len(reward_weights)

    reward_fns_list = [
        self._custom_reward_fns[fn] if isinstance(fn, (str,)) else fn
        for fn in reward_fns_list
    ]

    def reward_fn(*args, **kwargs):
      """Returns rewards, discounts."""
      reward_tuples = [
          reward_fn(*args, **kwargs) for reward_fn in reward_fns_list
      ]
      rewards_list = [reward_tuple[0] for reward_tuple in reward_tuples]
      discounts_list = [reward_tuple[1] for reward_tuple in reward_tuples]
      ndims = max([r.shape.ndims for r in rewards_list])
      if ndims > 1:  # expand reward shapes to allow broadcasting
        for i in range(len(rewards_list)):
          for _ in range(rewards_list[i].shape.ndims - ndims):
            rewards_list[i] = tf.expand_dims(rewards_list[i], axis=-1)
          for _ in range(discounts_list[i].shape.ndims - ndims):
            discounts_list[i] = tf.expand_dims(discounts_list[i], axis=-1)
      rewards = tf.add_n(
          [r * tf.to_float(w) for r, w in zip(rewards_list, reward_weights)])
      discounts = discounts_list[0]
      for d in discounts_list[1:]:
        discounts *= d

      return rewards, discounts

    return reward_fn

  def _make_sampler_fn(self, sampler_cls_list, mode):
    """Returns a fn that samples a list of context vars.

    Args:
      sampler_cls_list: A list of sampler classes.
      mode: A string representing the operating mode.
    """
    if not isinstance(sampler_cls_list, (list, tuple)):
      sampler_cls_list = [sampler_cls_list]

    self._samplers[mode] = []
    sampler_fns = []
    for spec, sampler in zip(self.context_specs, sampler_cls_list):
      if isinstance(sampler, (str,)):
        sampler_fn = self._custom_sampler_fns[sampler]
      else:
        sampler_fn = sampler(context_spec=spec)
        self._samplers[mode].append(sampler_fn)
      sampler_fns.append(sampler_fn)

    def batch_sampler_fn(batch_size, state=None, next_state=None, **kwargs):
      """Sampler fn."""
      contexts_tuples = [
          sampler(batch_size, state=state, next_state=next_state, **kwargs)
          for sampler in sampler_fns]
      contexts = [c[0] for c in contexts_tuples]
      next_contexts = [c[1] for c in contexts_tuples]
      contexts = [
          normalizer.update_apply(c) if normalizer is not None else c
          for normalizer, c in zip(self._normalizers, contexts)
      ]
      next_contexts = [
          normalizer.apply(c) if normalizer is not None else c
          for normalizer, c in zip(self._normalizers, next_contexts)
      ]
      return contexts, next_contexts

    self._sampler_fns[mode] = batch_sampler_fn

  def set_env_context_op(self, context, disable_unnormalizer=False):
    """Returns a TensorFlow op that sets the environment context.

    Args:
      context: A list of context Tensor variables.
      disable_unnormalizer: Disable unnormalization.
    Returns:
      A TensorFlow op that sets the environment context.
    """
    ret_val = np.array(1.0, dtype=np.float32)
    if not self._settable_context:
      return tf.identity(ret_val)

    if not disable_unnormalizer:
      context = [
          normalizer.unapply(tf.expand_dims(c, 0))[0]
          if normalizer is not None else c
          for normalizer, c in zip(self._normalizers, context)
      ]

    def set_context_func(*env_context_values):
      tf.logging.info('[set_env_context_op] Setting gym environment context.')
      # pylint: disable=protected-access
      self.gym_env.set_context(*env_context_values)
      return ret_val
      # pylint: enable=protected-access

    with tf.name_scope('set_env_context'):
      set_op = tf.py_func(set_context_func, context, tf.float32,
                          name='set_env_context_py_func')
      set_op.set_shape([])
    return set_op

  def set_replay(self, replay):
    """Set replay buffer for samplers.

    Args:
      replay: A replay buffer.
    """
    for _, samplers in self._samplers.items():
      for sampler in samplers:
        sampler.set_replay(replay)

  def get_clip_fns(self):
    """Returns a list of clip fns for contexts.

    Returns:
      A list of fns that clip context tensors.
    """
    clip_fns = []
    for context_range in self.context_ranges:
      def clip_fn(var_, range_=context_range):
        """Clip a tensor."""
        if range_ is None:
          clipped_var = tf.identity(var_)
        elif isinstance(range_[0], (int, long, float, list, np.ndarray)):
          clipped_var = tf.clip_by_value(
              var_,
              range_[0],
              range_[1],)
        else: raise NotImplementedError(range_)
        return clipped_var
      clip_fns.append(clip_fn)
    return clip_fns

  def _validate_contexts(self, contexts):
    """Validate if contexts have right specs.

    Args:
      contexts: A list of [batch_size, num_context_dim] tensors.
    Raises:
      ValueError: If shape or dtype mismatches that of spec.
    """
    for i, (context, spec) in enumerate(zip(contexts, self.context_specs)):
      if context[0].shape != spec.shape:
        raise ValueError('contexts[%d] has invalid shape %s wrt spec shape %s' %
                         (i, context[0].shape, spec.shape))
      if context.dtype != spec.dtype:
        raise ValueError('contexts[%d] has invalid dtype %s wrt spec dtype %s' %
                         (i, context.dtype, spec.dtype))

  def context_multi_transition_fn(self, contexts, **kwargs):
    """Returns multiple future contexts starting from a batch."""
    assert self._context_multi_transition_fn
    return self._context_multi_transition_fn(contexts, None, None, **kwargs)

  def step(self, mode, agent=None, action_fn=None, **kwargs):
    """Returns [next_contexts..., next_timer] list of ops.

    Args:
      mode: a string representing the mode=[train, explore, eval].
      **kwargs: kwargs for context_transition_fn.
    Returns:
      a list of ops that set the context.
    """
    if agent is None:
      ops = []
      if self._context_transition_fn is not None:
        def sampler_fn():
          samples = self.sample_contexts(mode, 1)[0]
          return [s[0] for s in samples]
        values = self._context_transition_fn(self.vars, self.t, sampler_fn, **kwargs)
        ops += [tf.assign(var, value) for var, value in zip(self.vars, values)]
      ops.append(tf.assign_add(self.t, 1))  # increment timer
      return ops
    else:
      ops = agent.tf_context.step(mode, **kwargs)
      state = kwargs['state']
      next_state = kwargs['next_state']
      state_repr = kwargs['state_repr']
      next_state_repr = kwargs['next_state_repr']
      with tf.control_dependencies(ops):  # Step high level context before computing low level one.
        # Get the context transition function output.
        values = self._context_transition_fn(self.vars, self.t, None,
                                             state=state_repr,
                                             next_state=next_state_repr)
        # Select a new goal every C steps, otherwise use context transition.
        low_level_context = [
            tf.cond(tf.equal(self.t % self.meta_action_every_n, 0),
                    lambda: tf.cast(action_fn(next_state, context=None), tf.float32),
                    lambda: values)]
        ops = [tf.assign(var, value)
               for var, value in zip(self.vars, low_level_context)]
        with tf.control_dependencies(ops):
          return [tf.assign_add(self.t, 1)]  # increment timer
        return ops

  def reset(self, mode, agent=None, action_fn=None, state=None):
    """Returns ops that reset the context.

    Args:
      mode: a string representing the mode=[train, explore, eval].
    Returns:
      a list of ops that reset the context.
    """
    if agent is None:
      values = self.sample_contexts(mode=mode, batch_size=1)[0]
      if values is None:
        return []
      values = [value[0] for value in values]
      values[0] = uvf_utils.tf_print(
          values[0],
          values,
          message='context:reset, mode=%s' % mode,
          first_n=10,
          name='context:reset:%s' % mode)
      all_ops = []
      for _, context_vars in sorted(self.context_vars.items()):
        ops = [tf.assign(var, value) for var, value in zip(context_vars, values)]
      all_ops += ops
      all_ops.append(self.set_env_context_op(values))
      all_ops.append(tf.assign(self.t, 0))  # reset timer
      return all_ops
    else:
      ops = agent.tf_context.reset(mode)
      # NOTE: The code is currently written in such a way that the higher level
      # policy does not provide a low-level context until the second
      # observation.  Insead, we just zero-out low-level contexts.
      for key, context_vars in sorted(self.context_vars.items()):
        ops += [tf.assign(var, tf.zeros_like(var)) for var, meta_var in
                zip(context_vars, agent.tf_context.context_vars[key])]

      ops.append(tf.assign(self.t, 0))  # reset timer
      return ops

  def create_vars(self, name, agent=None):
    """Create tf variables for contexts.

    Args:
      name: Name of the variables.
    Returns:
      A list of [num_context_dims] tensors.
    """
    if agent is not None:
      meta_vars = agent.create_vars(name)
    else:
      meta_vars = {}
    assert name not in self.context_vars, ('Conflict! %s is already '
                                           'initialized.') % name
    self.context_vars[name] = tuple([
        tf.Variable(
            tf.zeros(shape=spec.shape, dtype=spec.dtype),
            name='%s_context_%d' % (name, i))
        for i, spec in enumerate(self.context_specs)
    ])
    return self.context_vars[name], meta_vars

  @property
  def n(self):
    return len(self.context_specs)

  @property
  def vars(self):
    return self.context_vars[self.VAR_NAME]

  # pylint: disable=protected-access
  @property
  def gym_env(self):
    return self._tf_env.pyenv._gym_env

  @property
  def tf_env(self):
    return self._tf_env
  # pylint: enable=protected-access