File size: 14,171 Bytes
97b6013
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
# Copyright 2018 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

"""Samplers for Contexts.

  Each sampler class should define __call__(batch_size).
"""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
import tensorflow as tf
slim = tf.contrib.slim
import gin.tf


@gin.configurable
class BaseSampler(object):
  """Base sampler."""

  def __init__(self, context_spec, context_range=None, k=2, scope='sampler'):
    """Construct a base sampler.

    Args:
      context_spec: A context spec.
      context_range: A tuple of (minval, max), where minval, maxval are floats
        or Numpy arrays with the same shape as the context.
      scope: A string denoting scope.
    """
    self._context_spec = context_spec
    self._context_range = context_range
    self._k = k
    self._scope = scope

  def __call__(self, batch_size, **kwargs):
    raise NotImplementedError

  def set_replay(self, replay=None):
    pass

  def _validate_contexts(self, contexts):
    """Validate if contexts have right spec.

    Args:
      contexts: A [batch_size, num_contexts_dim] tensor.
    Raises:
      ValueError: If shape or dtype mismatches that of spec.
    """
    if contexts[0].shape != self._context_spec.shape:
      raise ValueError('contexts has invalid shape %s wrt spec shape %s' %
                       (contexts[0].shape, self._context_spec.shape))
    if contexts.dtype != self._context_spec.dtype:
      raise ValueError('contexts has invalid dtype %s wrt spec dtype %s' %
                       (contexts.dtype, self._context_spec.dtype))


@gin.configurable
class ZeroSampler(BaseSampler):
  """Zero sampler."""

  def __call__(self, batch_size, **kwargs):
    """Sample a batch of context.

    Args:
      batch_size: Batch size.
    Returns:
      Two [batch_size, num_context_dims] tensors.
    """
    contexts = tf.zeros(
        dtype=self._context_spec.dtype,
        shape=[
            batch_size,
        ] + self._context_spec.shape.as_list())
    return contexts, contexts


@gin.configurable
class BinarySampler(BaseSampler):
  """Binary sampler."""

  def __init__(self, probs=0.5, *args, **kwargs):
    """Constructor."""
    super(BinarySampler, self).__init__(*args, **kwargs)
    self._probs = probs

  def __call__(self, batch_size, **kwargs):
    """Sample a batch of context."""
    spec = self._context_spec
    contexts = tf.random_uniform(
        shape=[
            batch_size,
        ] + spec.shape.as_list(), dtype=tf.float32)
    contexts = tf.cast(tf.greater(contexts, self._probs), dtype=spec.dtype)
    return contexts, contexts


@gin.configurable
class RandomSampler(BaseSampler):
  """Random sampler."""

  def __call__(self, batch_size, **kwargs):
    """Sample a batch of context.

    Args:
      batch_size: Batch size.
    Returns:
      Two [batch_size, num_context_dims] tensors.
    """
    spec = self._context_spec
    context_range = self._context_range
    if isinstance(context_range[0], (int, float)):
      contexts = tf.random_uniform(
          shape=[
              batch_size,
          ] + spec.shape.as_list(),
          minval=context_range[0],
          maxval=context_range[1],
          dtype=spec.dtype)
    elif isinstance(context_range[0], (list, tuple, np.ndarray)):
      assert len(spec.shape.as_list()) == 1
      assert spec.shape.as_list()[0] == len(context_range[0])
      assert spec.shape.as_list()[0] == len(context_range[1])
      contexts = tf.concat(
          [
              tf.random_uniform(
                  shape=[
                      batch_size, 1,
                  ] + spec.shape.as_list()[1:],
                  minval=context_range[0][i],
                  maxval=context_range[1][i],
                  dtype=spec.dtype) for i in range(spec.shape.as_list()[0])
          ],
          axis=1)
    else: raise NotImplementedError(context_range)
    self._validate_contexts(contexts)
    state, next_state = kwargs['state'], kwargs['next_state']
    if state is not None and next_state is not None:
      pass
      #contexts = tf.concat(
      #    [tf.random_normal(tf.shape(state[:, :self._k]), dtype=tf.float64) +
      #     tf.random_shuffle(state[:, :self._k]),
      #     contexts[:, self._k:]], 1)

    return contexts, contexts


@gin.configurable
class ScheduledSampler(BaseSampler):
  """Scheduled sampler."""

  def __init__(self,
               scope='default',
               values=None,
               scheduler='cycle',
               scheduler_params=None,
               *args, **kwargs):
    """Construct sampler.

    Args:
      scope: Scope name.
      values: A list of numbers or [num_context_dim] Numpy arrays
        representing the values to cycle.
      scheduler: scheduler type.
      scheduler_params: scheduler parameters.
      *args: arguments.
      **kwargs: keyword arguments.
    """
    super(ScheduledSampler, self).__init__(*args, **kwargs)
    self._scope = scope
    self._values = values
    self._scheduler = scheduler
    self._scheduler_params = scheduler_params or {}
    assert self._values is not None and len(
        self._values), 'must provide non-empty values.'
    self._n = len(self._values)
    # TODO(shanegu): move variable creation outside. resolve tf.cond problem.
    self._count = 0
    self._i = tf.Variable(
        tf.zeros(shape=(), dtype=tf.int32),
        name='%s-scheduled_sampler_%d' % (self._scope, self._count))
    self._values = tf.constant(self._values, dtype=self._context_spec.dtype)

  def __call__(self, batch_size, **kwargs):
    """Sample a batch of context.

    Args:
      batch_size: Batch size.
    Returns:
      Two [batch_size, num_context_dims] tensors.
    """
    spec = self._context_spec
    next_op = self._next(self._i)
    with tf.control_dependencies([next_op]):
      value = self._values[self._i]
      if value.get_shape().as_list():
        values = tf.tile(
            tf.expand_dims(value, 0), (batch_size,) + (1,) * spec.shape.ndims)
      else:
        values = value + tf.zeros(
            shape=[
                batch_size,
            ] + spec.shape.as_list(), dtype=spec.dtype)
    self._validate_contexts(values)
    self._count += 1
    return values, values

  def _next(self, i):
    """Return op that increments pointer to next value.

    Args:
      i: A tensorflow integer variable.
    Returns:
      Op that increments pointer.
    """
    if self._scheduler == 'cycle':
      inc = ('inc' in self._scheduler_params and
             self._scheduler_params['inc']) or 1
      return tf.assign(i, tf.mod(i+inc, self._n))
    else:
      raise NotImplementedError(self._scheduler)


@gin.configurable
class ReplaySampler(BaseSampler):
  """Replay sampler."""

  def __init__(self,
               prefetch_queue_capacity=2,
               override_indices=None,
               state_indices=None,
               *args,
               **kwargs):
    """Construct sampler.

    Args:
      prefetch_queue_capacity: Capacity for prefetch queue.
      override_indices: Override indices.
      state_indices: Select certain indices from state dimension.
      *args: arguments.
      **kwargs: keyword arguments.
    """
    super(ReplaySampler, self).__init__(*args, **kwargs)
    self._prefetch_queue_capacity = prefetch_queue_capacity
    self._override_indices = override_indices
    self._state_indices = state_indices

  def set_replay(self, replay):
    """Set replay.

    Args:
      replay: A replay buffer.
    """
    self._replay = replay

  def __call__(self, batch_size, **kwargs):
    """Sample a batch of context.

    Args:
      batch_size: Batch size.
    Returns:
      Two [batch_size, num_context_dims] tensors.
    """
    batch = self._replay.GetRandomBatch(batch_size)
    next_states = batch[4]
    if self._prefetch_queue_capacity > 0:
      batch_queue = slim.prefetch_queue.prefetch_queue(
          [next_states],
          capacity=self._prefetch_queue_capacity,
          name='%s/batch_context_queue' % self._scope)
      next_states = batch_queue.dequeue()
    if self._override_indices is not None:
      assert self._context_range is not None and isinstance(
          self._context_range[0], (int, long, float))
      next_states = tf.concat(
          [
              tf.random_uniform(
                  shape=next_states[:, :1].shape,
                  minval=self._context_range[0],
                  maxval=self._context_range[1],
                  dtype=next_states.dtype)
              if i in self._override_indices else next_states[:, i:i + 1]
              for i in range(self._context_spec.shape.as_list()[0])
          ],
          axis=1)
    if self._state_indices is not None:
      next_states = tf.concat(
          [
              next_states[:, i:i + 1]
              for i in range(self._context_spec.shape.as_list()[0])
          ],
          axis=1)
    self._validate_contexts(next_states)
    return next_states, next_states


@gin.configurable
class TimeSampler(BaseSampler):
  """Time Sampler."""

  def __init__(self, minval=0, maxval=1, timestep=-1, *args, **kwargs):
    """Construct sampler.

    Args:
      minval: Min value integer.
      maxval: Max value integer.
      timestep: Time step between states and next_states.
      *args: arguments.
      **kwargs: keyword arguments.
    """
    super(TimeSampler, self).__init__(*args, **kwargs)
    assert self._context_spec.shape.as_list() == [1]
    self._minval = minval
    self._maxval = maxval
    self._timestep = timestep

  def __call__(self, batch_size, **kwargs):
    """Sample a batch of context.

    Args:
      batch_size: Batch size.
    Returns:
      Two [batch_size, num_context_dims] tensors.
    """
    if self._maxval == self._minval:
      contexts = tf.constant(
          self._maxval, shape=[batch_size, 1], dtype=tf.int32)
    else:
      contexts = tf.random_uniform(
          shape=[batch_size, 1],
          dtype=tf.int32,
          maxval=self._maxval,
          minval=self._minval)
    next_contexts = tf.maximum(contexts + self._timestep, 0)

    return tf.cast(
        contexts, dtype=self._context_spec.dtype), tf.cast(
            next_contexts, dtype=self._context_spec.dtype)


@gin.configurable
class ConstantSampler(BaseSampler):
  """Constant sampler."""

  def __init__(self, value=None, *args, **kwargs):
    """Construct sampler.

    Args:
      value: A list or Numpy array for values of the constant.
      *args: arguments.
      **kwargs: keyword arguments.
    """
    super(ConstantSampler, self).__init__(*args, **kwargs)
    self._value = value

  def __call__(self, batch_size, **kwargs):
    """Sample a batch of context.

    Args:
      batch_size: Batch size.
    Returns:
      Two [batch_size, num_context_dims] tensors.
    """
    spec = self._context_spec
    value_ = tf.constant(self._value, shape=spec.shape, dtype=spec.dtype)
    values = tf.tile(
        tf.expand_dims(value_, 0), (batch_size,) + (1,) * spec.shape.ndims)
    self._validate_contexts(values)
    return values, values


@gin.configurable
class DirectionSampler(RandomSampler):
  """Direction sampler."""

  def __call__(self, batch_size, **kwargs):
    """Sample a batch of context.

    Args:
      batch_size: Batch size.
    Returns:
      Two [batch_size, num_context_dims] tensors.
    """
    spec = self._context_spec
    context_range = self._context_range
    if isinstance(context_range[0], (int, float)):
      contexts = tf.random_uniform(
          shape=[
              batch_size,
          ] + spec.shape.as_list(),
          minval=context_range[0],
          maxval=context_range[1],
          dtype=spec.dtype)
    elif isinstance(context_range[0], (list, tuple, np.ndarray)):
      assert len(spec.shape.as_list()) == 1
      assert spec.shape.as_list()[0] == len(context_range[0])
      assert spec.shape.as_list()[0] == len(context_range[1])
      contexts = tf.concat(
          [
              tf.random_uniform(
                  shape=[
                      batch_size, 1,
                  ] + spec.shape.as_list()[1:],
                  minval=context_range[0][i],
                  maxval=context_range[1][i],
                  dtype=spec.dtype) for i in range(spec.shape.as_list()[0])
          ],
          axis=1)
    else: raise NotImplementedError(context_range)
    self._validate_contexts(contexts)
    if 'sampler_fn' in kwargs:
      other_contexts = kwargs['sampler_fn']()
    else:
      other_contexts = contexts
    state, next_state = kwargs['state'], kwargs['next_state']
    if state is not None and next_state is not None:
      my_context_range = (np.array(context_range[1]) - np.array(context_range[0])) / 2 * np.ones(spec.shape.as_list())
      contexts = tf.concat(
          [0.1 * my_context_range[:self._k] *
           tf.random_normal(tf.shape(state[:, :self._k]), dtype=state.dtype) +
           tf.random_shuffle(state[:, :self._k]) - state[:, :self._k],
           other_contexts[:, self._k:]], 1)
      #contexts = tf.Print(contexts,
      #                    [contexts, tf.reduce_max(contexts, 0),
      #                     tf.reduce_min(state, 0), tf.reduce_max(state, 0)], 'contexts', summarize=15)
      next_contexts = tf.concat( #LALA
          [state[:, :self._k] + contexts[:, :self._k] - next_state[:, :self._k],
           other_contexts[:, self._k:]], 1)
      next_contexts = contexts  #LALA cosine
    else:
      next_contexts = contexts
    return tf.stop_gradient(contexts), tf.stop_gradient(next_contexts)