File size: 4,728 Bytes
97b6013
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
# Copyright 2018 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

"""Wrapper for creating the ant environment in gym_mujoco."""

import math
import numpy as np
import mujoco_py
from gym import utils
from gym.envs.mujoco import mujoco_env


def q_inv(a):
  return [a[0], -a[1], -a[2], -a[3]]


def q_mult(a, b): # multiply two quaternion
  w = a[0] * b[0] - a[1] * b[1] - a[2] * b[2] - a[3] * b[3]
  i = a[0] * b[1] + a[1] * b[0] + a[2] * b[3] - a[3] * b[2]
  j = a[0] * b[2] - a[1] * b[3] + a[2] * b[0] + a[3] * b[1]
  k = a[0] * b[3] + a[1] * b[2] - a[2] * b[1] + a[3] * b[0]
  return [w, i, j, k]


class AntEnv(mujoco_env.MujocoEnv, utils.EzPickle):
  FILE = "ant.xml"
  ORI_IND = 3

  def __init__(self, file_path=None, expose_all_qpos=True,
               expose_body_coms=None, expose_body_comvels=None):
    self._expose_all_qpos = expose_all_qpos
    self._expose_body_coms = expose_body_coms
    self._expose_body_comvels = expose_body_comvels
    self._body_com_indices = {}
    self._body_comvel_indices = {}

    mujoco_env.MujocoEnv.__init__(self, file_path, 5)
    utils.EzPickle.__init__(self)

  @property
  def physics(self):
    # check mujoco version is greater than version 1.50 to call correct physics
    # model containing PyMjData object for getting and setting position/velocity
    # check https://github.com/openai/mujoco-py/issues/80 for updates to api
    if mujoco_py.get_version() >= '1.50':
      return self.sim
    else:
      return self.model

  def _step(self, a):
    return self.step(a)

  def step(self, a):
    xposbefore = self.get_body_com("torso")[0]
    self.do_simulation(a, self.frame_skip)
    xposafter = self.get_body_com("torso")[0]
    forward_reward = (xposafter - xposbefore) / self.dt
    ctrl_cost = .5 * np.square(a).sum()
    survive_reward = 1.0
    reward = forward_reward - ctrl_cost + survive_reward
    state = self.state_vector()
    done = False
    ob = self._get_obs()
    return ob, reward, done, dict(
        reward_forward=forward_reward,
        reward_ctrl=-ctrl_cost,
        reward_survive=survive_reward)

  def _get_obs(self):
    # No cfrc observation
    if self._expose_all_qpos:
      obs = np.concatenate([
          self.physics.data.qpos.flat[:15],  # Ensures only ant obs.
          self.physics.data.qvel.flat[:14],
      ])
    else:
      obs = np.concatenate([
          self.physics.data.qpos.flat[2:15],
          self.physics.data.qvel.flat[:14],
      ])

    if self._expose_body_coms is not None:
      for name in self._expose_body_coms:
        com = self.get_body_com(name)
        if name not in self._body_com_indices:
          indices = range(len(obs), len(obs) + len(com))
          self._body_com_indices[name] = indices
        obs = np.concatenate([obs, com])

    if self._expose_body_comvels is not None:
      for name in self._expose_body_comvels:
        comvel = self.get_body_comvel(name)
        if name not in self._body_comvel_indices:
          indices = range(len(obs), len(obs) + len(comvel))
          self._body_comvel_indices[name] = indices
        obs = np.concatenate([obs, comvel])
    return obs

  def reset_model(self):
    qpos = self.init_qpos + self.np_random.uniform(
        size=self.model.nq, low=-.1, high=.1)
    qvel = self.init_qvel + self.np_random.randn(self.model.nv) * .1

    # Set everything other than ant to original position and 0 velocity.
    qpos[15:] = self.init_qpos[15:]
    qvel[14:] = 0.
    self.set_state(qpos, qvel)
    return self._get_obs()

  def viewer_setup(self):
    self.viewer.cam.distance = self.model.stat.extent * 0.5

  def get_ori(self):
    ori = [0, 1, 0, 0]
    rot = self.physics.data.qpos[self.__class__.ORI_IND:self.__class__.ORI_IND + 4]  # take the quaternion
    ori = q_mult(q_mult(rot, ori), q_inv(rot))[1:3]  # project onto x-y plane
    ori = math.atan2(ori[1], ori[0])
    return ori

  def set_xy(self, xy):
    qpos = np.copy(self.physics.data.qpos)
    qpos[0] = xy[0]
    qpos[1] = xy[1]

    qvel = self.physics.data.qvel
    self.set_state(qpos, qvel)

  def get_xy(self):
    return self.physics.data.qpos[:2]