File size: 18,328 Bytes
97b6013
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
# Copyright 2018 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

"""Adapted from rllab maze_env.py."""

import os
import tempfile
import xml.etree.ElementTree as ET
import math
import numpy as np
import gym

from environments import maze_env_utils

# Directory that contains mujoco xml files.
MODEL_DIR = 'environments/assets'


class MazeEnv(gym.Env):
  MODEL_CLASS = None

  MAZE_HEIGHT = None
  MAZE_SIZE_SCALING = None

  def __init__(
      self,
      maze_id=None,
      maze_height=0.5,
      maze_size_scaling=8,
      n_bins=0,
      sensor_range=3.,
      sensor_span=2 * math.pi,
      observe_blocks=False,
      put_spin_near_agent=False,
      top_down_view=False,
      manual_collision=False,
      *args,
      **kwargs):
    self._maze_id = maze_id

    model_cls = self.__class__.MODEL_CLASS
    if model_cls is None:
      raise "MODEL_CLASS unspecified!"
    xml_path = os.path.join(MODEL_DIR, model_cls.FILE)
    tree = ET.parse(xml_path)
    worldbody = tree.find(".//worldbody")

    self.MAZE_HEIGHT = height = maze_height
    self.MAZE_SIZE_SCALING = size_scaling = maze_size_scaling
    self._n_bins = n_bins
    self._sensor_range = sensor_range * size_scaling
    self._sensor_span = sensor_span
    self._observe_blocks = observe_blocks
    self._put_spin_near_agent = put_spin_near_agent
    self._top_down_view = top_down_view
    self._manual_collision = manual_collision

    self.MAZE_STRUCTURE = structure = maze_env_utils.construct_maze(maze_id=self._maze_id)
    self.elevated = any(-1 in row for row in structure)  # Elevate the maze to allow for falling.
    self.blocks = any(
        any(maze_env_utils.can_move(r) for r in row)
        for row in structure)  # Are there any movable blocks?

    torso_x, torso_y = self._find_robot()
    self._init_torso_x = torso_x
    self._init_torso_y = torso_y
    self._init_positions = [
        (x - torso_x, y - torso_y)
        for x, y in self._find_all_robots()]

    self._xy_to_rowcol = lambda x, y: (2 + (y + size_scaling / 2) / size_scaling,
                                       2 + (x + size_scaling / 2) / size_scaling)
    self._view = np.zeros([5, 5, 3])  # walls (immovable), chasms (fall), movable blocks

    height_offset = 0.
    if self.elevated:
      # Increase initial z-pos of ant.
      height_offset = height * size_scaling
      torso = tree.find(".//body[@name='torso']")
      torso.set('pos', '0 0 %.2f' % (0.75 + height_offset))
    if self.blocks:
      # If there are movable blocks, change simulation settings to perform
      # better contact detection.
      default = tree.find(".//default")
      default.find('.//geom').set('solimp', '.995 .995 .01')

    self.movable_blocks = []
    for i in range(len(structure)):
      for j in range(len(structure[0])):
        struct = structure[i][j]
        if struct == 'r' and self._put_spin_near_agent:
          struct = maze_env_utils.Move.SpinXY
        if self.elevated and struct not in [-1]:
          # Create elevated platform.
          ET.SubElement(
              worldbody, "geom",
              name="elevated_%d_%d" % (i, j),
              pos="%f %f %f" % (j * size_scaling - torso_x,
                                i * size_scaling - torso_y,
                                height / 2 * size_scaling),
              size="%f %f %f" % (0.5 * size_scaling,
                                 0.5 * size_scaling,
                                 height / 2 * size_scaling),
              type="box",
              material="",
              contype="1",
              conaffinity="1",
              rgba="0.9 0.9 0.9 1",
          )
        if struct == 1:  # Unmovable block.
          # Offset all coordinates so that robot starts at the origin.
          ET.SubElement(
              worldbody, "geom",
              name="block_%d_%d" % (i, j),
              pos="%f %f %f" % (j * size_scaling - torso_x,
                                i * size_scaling - torso_y,
                                height_offset +
                                height / 2 * size_scaling),
              size="%f %f %f" % (0.5 * size_scaling,
                                 0.5 * size_scaling,
                                 height / 2 * size_scaling),
              type="box",
              material="",
              contype="1",
              conaffinity="1",
              rgba="0.4 0.4 0.4 1",
          )
        elif maze_env_utils.can_move(struct):  # Movable block.
          # The "falling" blocks are shrunk slightly and increased in mass to
          # ensure that it can fall easily through a gap in the platform blocks.
          name = "movable_%d_%d" % (i, j)
          self.movable_blocks.append((name, struct))
          falling = maze_env_utils.can_move_z(struct)
          spinning = maze_env_utils.can_spin(struct)
          x_offset = 0.25 * size_scaling if spinning else 0.0
          y_offset = 0.0
          shrink = 0.1 if spinning else 0.99 if falling else 1.0
          height_shrink = 0.1 if spinning else 1.0
          movable_body = ET.SubElement(
              worldbody, "body",
              name=name,
              pos="%f %f %f" % (j * size_scaling - torso_x + x_offset,
                                i * size_scaling - torso_y + y_offset,
                                height_offset +
                                height / 2 * size_scaling * height_shrink),
          )
          ET.SubElement(
              movable_body, "geom",
              name="block_%d_%d" % (i, j),
              pos="0 0 0",
              size="%f %f %f" % (0.5 * size_scaling * shrink,
                                 0.5 * size_scaling * shrink,
                                 height / 2 * size_scaling * height_shrink),
              type="box",
              material="",
              mass="0.001" if falling else "0.0002",
              contype="1",
              conaffinity="1",
              rgba="0.9 0.1 0.1 1"
          )
          if maze_env_utils.can_move_x(struct):
            ET.SubElement(
                movable_body, "joint",
                armature="0",
                axis="1 0 0",
                damping="0.0",
                limited="true" if falling else "false",
                range="%f %f" % (-size_scaling, size_scaling),
                margin="0.01",
                name="movable_x_%d_%d" % (i, j),
                pos="0 0 0",
                type="slide"
            )
          if maze_env_utils.can_move_y(struct):
            ET.SubElement(
                movable_body, "joint",
                armature="0",
                axis="0 1 0",
                damping="0.0",
                limited="true" if falling else "false",
                range="%f %f" % (-size_scaling, size_scaling),
                margin="0.01",
                name="movable_y_%d_%d" % (i, j),
                pos="0 0 0",
                type="slide"
            )
          if maze_env_utils.can_move_z(struct):
            ET.SubElement(
                movable_body, "joint",
                armature="0",
                axis="0 0 1",
                damping="0.0",
                limited="true",
                range="%f 0" % (-height_offset),
                margin="0.01",
                name="movable_z_%d_%d" % (i, j),
                pos="0 0 0",
                type="slide"
            )
          if maze_env_utils.can_spin(struct):
            ET.SubElement(
                movable_body, "joint",
                armature="0",
                axis="0 0 1",
                damping="0.0",
                limited="false",
                name="spinable_%d_%d" % (i, j),
                pos="0 0 0",
                type="ball"
            )

    torso = tree.find(".//body[@name='torso']")
    geoms = torso.findall(".//geom")
    for geom in geoms:
      if 'name' not in geom.attrib:
        raise Exception("Every geom of the torso must have a name "
                        "defined")

    _, file_path = tempfile.mkstemp(text=True, suffix='.xml')
    tree.write(file_path)

    self.wrapped_env = model_cls(*args, file_path=file_path, **kwargs)

  def get_ori(self):
    return self.wrapped_env.get_ori()

  def get_top_down_view(self):
    self._view = np.zeros_like(self._view)

    def valid(row, col):
      return self._view.shape[0] > row >= 0 and self._view.shape[1] > col >= 0

    def update_view(x, y, d, row=None, col=None):
      if row is None or col is None:
        x = x - self._robot_x
        y = y - self._robot_y
        th = self._robot_ori

        row, col = self._xy_to_rowcol(x, y)
        update_view(x, y, d, row=row, col=col)
        return

      row, row_frac, col, col_frac = int(row), row % 1, int(col), col % 1
      if row_frac < 0:
        row_frac += 1
      if col_frac < 0:
        col_frac += 1

      if valid(row, col):
        self._view[row, col, d] += (
            (min(1., row_frac + 0.5) - max(0., row_frac - 0.5)) *
            (min(1., col_frac + 0.5) - max(0., col_frac - 0.5)))
      if valid(row - 1, col):
        self._view[row - 1, col, d] += (
            (max(0., 0.5 - row_frac)) *
            (min(1., col_frac + 0.5) - max(0., col_frac - 0.5)))
      if valid(row + 1, col):
        self._view[row + 1, col, d] += (
            (max(0., row_frac - 0.5)) *
            (min(1., col_frac + 0.5) - max(0., col_frac - 0.5)))
      if valid(row, col - 1):
        self._view[row, col - 1, d] += (
            (min(1., row_frac + 0.5) - max(0., row_frac - 0.5)) *
            (max(0., 0.5 - col_frac)))
      if valid(row, col + 1):
        self._view[row, col + 1, d] += (
            (min(1., row_frac + 0.5) - max(0., row_frac - 0.5)) *
            (max(0., col_frac - 0.5)))
      if valid(row - 1, col - 1):
        self._view[row - 1, col - 1, d] += (
            (max(0., 0.5 - row_frac)) * max(0., 0.5 - col_frac))
      if valid(row - 1, col + 1):
        self._view[row - 1, col + 1, d] += (
            (max(0., 0.5 - row_frac)) * max(0., col_frac - 0.5))
      if valid(row + 1, col + 1):
        self._view[row + 1, col + 1, d] += (
            (max(0., row_frac - 0.5)) * max(0., col_frac - 0.5))
      if valid(row + 1, col - 1):
        self._view[row + 1, col - 1, d] += (
            (max(0., row_frac - 0.5)) * max(0., 0.5 - col_frac))

    # Draw ant.
    robot_x, robot_y = self.wrapped_env.get_body_com("torso")[:2]
    self._robot_x = robot_x
    self._robot_y = robot_y
    self._robot_ori = self.get_ori()

    structure = self.MAZE_STRUCTURE
    size_scaling = self.MAZE_SIZE_SCALING
    height = self.MAZE_HEIGHT

    # Draw immovable blocks and chasms.
    for i in range(len(structure)):
      for j in range(len(structure[0])):
        if structure[i][j] == 1:  # Wall.
          update_view(j * size_scaling - self._init_torso_x,
                      i * size_scaling - self._init_torso_y,
                      0)
        if structure[i][j] == -1:  # Chasm.
          update_view(j * size_scaling - self._init_torso_x,
                      i * size_scaling - self._init_torso_y,
                      1)

    # Draw movable blocks.
    for block_name, block_type in self.movable_blocks:
      block_x, block_y = self.wrapped_env.get_body_com(block_name)[:2]
      update_view(block_x, block_y, 2)

    return self._view

  def get_range_sensor_obs(self):
    """Returns egocentric range sensor observations of maze."""
    robot_x, robot_y, robot_z = self.wrapped_env.get_body_com("torso")[:3]
    ori = self.get_ori()

    structure = self.MAZE_STRUCTURE
    size_scaling = self.MAZE_SIZE_SCALING
    height = self.MAZE_HEIGHT

    segments = []
    # Get line segments (corresponding to outer boundary) of each immovable
    # block or drop-off.
    for i in range(len(structure)):
      for j in range(len(structure[0])):
        if structure[i][j] in [1, -1]:  # There's a wall or drop-off.
          cx = j * size_scaling - self._init_torso_x
          cy = i * size_scaling - self._init_torso_y
          x1 = cx - 0.5 * size_scaling
          x2 = cx + 0.5 * size_scaling
          y1 = cy - 0.5 * size_scaling
          y2 = cy + 0.5 * size_scaling
          struct_segments = [
              ((x1, y1), (x2, y1)),
              ((x2, y1), (x2, y2)),
              ((x2, y2), (x1, y2)),
              ((x1, y2), (x1, y1)),
          ]
          for seg in struct_segments:
            segments.append(dict(
                segment=seg,
                type=structure[i][j],
            ))
    # Get line segments (corresponding to outer boundary) of each movable
    # block within the agent's z-view.
    for block_name, block_type in self.movable_blocks:
      block_x, block_y, block_z = self.wrapped_env.get_body_com(block_name)[:3]
      if (block_z + height * size_scaling / 2 >= robot_z and
          robot_z >= block_z - height * size_scaling / 2):  # Block in view.
        x1 = block_x - 0.5 * size_scaling
        x2 = block_x + 0.5 * size_scaling
        y1 = block_y - 0.5 * size_scaling
        y2 = block_y + 0.5 * size_scaling
        struct_segments = [
            ((x1, y1), (x2, y1)),
            ((x2, y1), (x2, y2)),
            ((x2, y2), (x1, y2)),
            ((x1, y2), (x1, y1)),
        ]
        for seg in struct_segments:
          segments.append(dict(
              segment=seg,
              type=block_type,
          ))

    sensor_readings = np.zeros((self._n_bins, 3))  # 3 for wall, drop-off, block
    for ray_idx in range(self._n_bins):
      ray_ori = (ori - self._sensor_span * 0.5 +
                 (2 * ray_idx + 1.0) / (2 * self._n_bins) * self._sensor_span)
      ray_segments = []
      # Get all segments that intersect with ray.
      for seg in segments:
        p = maze_env_utils.ray_segment_intersect(
            ray=((robot_x, robot_y), ray_ori),
            segment=seg["segment"])
        if p is not None:
          ray_segments.append(dict(
              segment=seg["segment"],
              type=seg["type"],
              ray_ori=ray_ori,
              distance=maze_env_utils.point_distance(p, (robot_x, robot_y)),
          ))
      if len(ray_segments) > 0:
        # Find out which segment is intersected first.
        first_seg = sorted(ray_segments, key=lambda x: x["distance"])[0]
        seg_type = first_seg["type"]
        idx = (0 if seg_type == 1 else  # Wall.
               1 if seg_type == -1 else  # Drop-off.
               2 if maze_env_utils.can_move(seg_type) else  # Block.
               None)
        if first_seg["distance"] <= self._sensor_range:
          sensor_readings[ray_idx][idx] = (self._sensor_range - first_seg["distance"]) / self._sensor_range

    return sensor_readings

  def _get_obs(self):
    wrapped_obs = self.wrapped_env._get_obs()
    if self._top_down_view:
      view = [self.get_top_down_view().flat]
    else:
      view = []

    if self._observe_blocks:
      additional_obs = []
      for block_name, block_type in self.movable_blocks:
        additional_obs.append(self.wrapped_env.get_body_com(block_name))
      wrapped_obs = np.concatenate([wrapped_obs[:3]] + additional_obs +
                                   [wrapped_obs[3:]])

    range_sensor_obs = self.get_range_sensor_obs()
    return np.concatenate([wrapped_obs,
                           range_sensor_obs.flat] +
                           view + [[self.t * 0.001]])

  def reset(self):
    self.t = 0
    self.trajectory = []
    self.wrapped_env.reset()
    if len(self._init_positions) > 1:
      xy = random.choice(self._init_positions)
      self.wrapped_env.set_xy(xy)
    return self._get_obs()

  @property
  def viewer(self):
    return self.wrapped_env.viewer

  def render(self, *args, **kwargs):
    return self.wrapped_env.render(*args, **kwargs)

  @property
  def observation_space(self):
    shape = self._get_obs().shape
    high = np.inf * np.ones(shape)
    low = -high
    return gym.spaces.Box(low, high)

  @property
  def action_space(self):
    return self.wrapped_env.action_space

  def _find_robot(self):
    structure = self.MAZE_STRUCTURE
    size_scaling = self.MAZE_SIZE_SCALING
    for i in range(len(structure)):
      for j in range(len(structure[0])):
        if structure[i][j] == 'r':
          return j * size_scaling, i * size_scaling
    assert False, 'No robot in maze specification.'

  def _find_all_robots(self):
    structure = self.MAZE_STRUCTURE
    size_scaling = self.MAZE_SIZE_SCALING
    coords = []
    for i in range(len(structure)):
      for j in range(len(structure[0])):
        if structure[i][j] == 'r':
          coords.append((j * size_scaling, i * size_scaling))
    return coords

  def _is_in_collision(self, pos):
    x, y = pos
    structure = self.MAZE_STRUCTURE
    size_scaling = self.MAZE_SIZE_SCALING
    for i in range(len(structure)):
      for j in range(len(structure[0])):
        if structure[i][j] == 1:
          minx = j * size_scaling - size_scaling * 0.5 - self._init_torso_x
          maxx = j * size_scaling + size_scaling * 0.5 - self._init_torso_x
          miny = i * size_scaling - size_scaling * 0.5 - self._init_torso_y
          maxy = i * size_scaling + size_scaling * 0.5 - self._init_torso_y
          if minx <= x <= maxx and miny <= y <= maxy:
            return True
    return False

  def step(self, action):
    self.t += 1
    if self._manual_collision:
      old_pos = self.wrapped_env.get_xy()
      inner_next_obs, inner_reward, done, info = self.wrapped_env.step(action)
      new_pos = self.wrapped_env.get_xy()
      if self._is_in_collision(new_pos):
        self.wrapped_env.set_xy(old_pos)
    else:
      inner_next_obs, inner_reward, done, info = self.wrapped_env.step(action)
    next_obs = self._get_obs()
    done = False
    return next_obs, inner_reward, done, info