File size: 18,328 Bytes
97b6013 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 |
# Copyright 2018 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Adapted from rllab maze_env.py."""
import os
import tempfile
import xml.etree.ElementTree as ET
import math
import numpy as np
import gym
from environments import maze_env_utils
# Directory that contains mujoco xml files.
MODEL_DIR = 'environments/assets'
class MazeEnv(gym.Env):
MODEL_CLASS = None
MAZE_HEIGHT = None
MAZE_SIZE_SCALING = None
def __init__(
self,
maze_id=None,
maze_height=0.5,
maze_size_scaling=8,
n_bins=0,
sensor_range=3.,
sensor_span=2 * math.pi,
observe_blocks=False,
put_spin_near_agent=False,
top_down_view=False,
manual_collision=False,
*args,
**kwargs):
self._maze_id = maze_id
model_cls = self.__class__.MODEL_CLASS
if model_cls is None:
raise "MODEL_CLASS unspecified!"
xml_path = os.path.join(MODEL_DIR, model_cls.FILE)
tree = ET.parse(xml_path)
worldbody = tree.find(".//worldbody")
self.MAZE_HEIGHT = height = maze_height
self.MAZE_SIZE_SCALING = size_scaling = maze_size_scaling
self._n_bins = n_bins
self._sensor_range = sensor_range * size_scaling
self._sensor_span = sensor_span
self._observe_blocks = observe_blocks
self._put_spin_near_agent = put_spin_near_agent
self._top_down_view = top_down_view
self._manual_collision = manual_collision
self.MAZE_STRUCTURE = structure = maze_env_utils.construct_maze(maze_id=self._maze_id)
self.elevated = any(-1 in row for row in structure) # Elevate the maze to allow for falling.
self.blocks = any(
any(maze_env_utils.can_move(r) for r in row)
for row in structure) # Are there any movable blocks?
torso_x, torso_y = self._find_robot()
self._init_torso_x = torso_x
self._init_torso_y = torso_y
self._init_positions = [
(x - torso_x, y - torso_y)
for x, y in self._find_all_robots()]
self._xy_to_rowcol = lambda x, y: (2 + (y + size_scaling / 2) / size_scaling,
2 + (x + size_scaling / 2) / size_scaling)
self._view = np.zeros([5, 5, 3]) # walls (immovable), chasms (fall), movable blocks
height_offset = 0.
if self.elevated:
# Increase initial z-pos of ant.
height_offset = height * size_scaling
torso = tree.find(".//body[@name='torso']")
torso.set('pos', '0 0 %.2f' % (0.75 + height_offset))
if self.blocks:
# If there are movable blocks, change simulation settings to perform
# better contact detection.
default = tree.find(".//default")
default.find('.//geom').set('solimp', '.995 .995 .01')
self.movable_blocks = []
for i in range(len(structure)):
for j in range(len(structure[0])):
struct = structure[i][j]
if struct == 'r' and self._put_spin_near_agent:
struct = maze_env_utils.Move.SpinXY
if self.elevated and struct not in [-1]:
# Create elevated platform.
ET.SubElement(
worldbody, "geom",
name="elevated_%d_%d" % (i, j),
pos="%f %f %f" % (j * size_scaling - torso_x,
i * size_scaling - torso_y,
height / 2 * size_scaling),
size="%f %f %f" % (0.5 * size_scaling,
0.5 * size_scaling,
height / 2 * size_scaling),
type="box",
material="",
contype="1",
conaffinity="1",
rgba="0.9 0.9 0.9 1",
)
if struct == 1: # Unmovable block.
# Offset all coordinates so that robot starts at the origin.
ET.SubElement(
worldbody, "geom",
name="block_%d_%d" % (i, j),
pos="%f %f %f" % (j * size_scaling - torso_x,
i * size_scaling - torso_y,
height_offset +
height / 2 * size_scaling),
size="%f %f %f" % (0.5 * size_scaling,
0.5 * size_scaling,
height / 2 * size_scaling),
type="box",
material="",
contype="1",
conaffinity="1",
rgba="0.4 0.4 0.4 1",
)
elif maze_env_utils.can_move(struct): # Movable block.
# The "falling" blocks are shrunk slightly and increased in mass to
# ensure that it can fall easily through a gap in the platform blocks.
name = "movable_%d_%d" % (i, j)
self.movable_blocks.append((name, struct))
falling = maze_env_utils.can_move_z(struct)
spinning = maze_env_utils.can_spin(struct)
x_offset = 0.25 * size_scaling if spinning else 0.0
y_offset = 0.0
shrink = 0.1 if spinning else 0.99 if falling else 1.0
height_shrink = 0.1 if spinning else 1.0
movable_body = ET.SubElement(
worldbody, "body",
name=name,
pos="%f %f %f" % (j * size_scaling - torso_x + x_offset,
i * size_scaling - torso_y + y_offset,
height_offset +
height / 2 * size_scaling * height_shrink),
)
ET.SubElement(
movable_body, "geom",
name="block_%d_%d" % (i, j),
pos="0 0 0",
size="%f %f %f" % (0.5 * size_scaling * shrink,
0.5 * size_scaling * shrink,
height / 2 * size_scaling * height_shrink),
type="box",
material="",
mass="0.001" if falling else "0.0002",
contype="1",
conaffinity="1",
rgba="0.9 0.1 0.1 1"
)
if maze_env_utils.can_move_x(struct):
ET.SubElement(
movable_body, "joint",
armature="0",
axis="1 0 0",
damping="0.0",
limited="true" if falling else "false",
range="%f %f" % (-size_scaling, size_scaling),
margin="0.01",
name="movable_x_%d_%d" % (i, j),
pos="0 0 0",
type="slide"
)
if maze_env_utils.can_move_y(struct):
ET.SubElement(
movable_body, "joint",
armature="0",
axis="0 1 0",
damping="0.0",
limited="true" if falling else "false",
range="%f %f" % (-size_scaling, size_scaling),
margin="0.01",
name="movable_y_%d_%d" % (i, j),
pos="0 0 0",
type="slide"
)
if maze_env_utils.can_move_z(struct):
ET.SubElement(
movable_body, "joint",
armature="0",
axis="0 0 1",
damping="0.0",
limited="true",
range="%f 0" % (-height_offset),
margin="0.01",
name="movable_z_%d_%d" % (i, j),
pos="0 0 0",
type="slide"
)
if maze_env_utils.can_spin(struct):
ET.SubElement(
movable_body, "joint",
armature="0",
axis="0 0 1",
damping="0.0",
limited="false",
name="spinable_%d_%d" % (i, j),
pos="0 0 0",
type="ball"
)
torso = tree.find(".//body[@name='torso']")
geoms = torso.findall(".//geom")
for geom in geoms:
if 'name' not in geom.attrib:
raise Exception("Every geom of the torso must have a name "
"defined")
_, file_path = tempfile.mkstemp(text=True, suffix='.xml')
tree.write(file_path)
self.wrapped_env = model_cls(*args, file_path=file_path, **kwargs)
def get_ori(self):
return self.wrapped_env.get_ori()
def get_top_down_view(self):
self._view = np.zeros_like(self._view)
def valid(row, col):
return self._view.shape[0] > row >= 0 and self._view.shape[1] > col >= 0
def update_view(x, y, d, row=None, col=None):
if row is None or col is None:
x = x - self._robot_x
y = y - self._robot_y
th = self._robot_ori
row, col = self._xy_to_rowcol(x, y)
update_view(x, y, d, row=row, col=col)
return
row, row_frac, col, col_frac = int(row), row % 1, int(col), col % 1
if row_frac < 0:
row_frac += 1
if col_frac < 0:
col_frac += 1
if valid(row, col):
self._view[row, col, d] += (
(min(1., row_frac + 0.5) - max(0., row_frac - 0.5)) *
(min(1., col_frac + 0.5) - max(0., col_frac - 0.5)))
if valid(row - 1, col):
self._view[row - 1, col, d] += (
(max(0., 0.5 - row_frac)) *
(min(1., col_frac + 0.5) - max(0., col_frac - 0.5)))
if valid(row + 1, col):
self._view[row + 1, col, d] += (
(max(0., row_frac - 0.5)) *
(min(1., col_frac + 0.5) - max(0., col_frac - 0.5)))
if valid(row, col - 1):
self._view[row, col - 1, d] += (
(min(1., row_frac + 0.5) - max(0., row_frac - 0.5)) *
(max(0., 0.5 - col_frac)))
if valid(row, col + 1):
self._view[row, col + 1, d] += (
(min(1., row_frac + 0.5) - max(0., row_frac - 0.5)) *
(max(0., col_frac - 0.5)))
if valid(row - 1, col - 1):
self._view[row - 1, col - 1, d] += (
(max(0., 0.5 - row_frac)) * max(0., 0.5 - col_frac))
if valid(row - 1, col + 1):
self._view[row - 1, col + 1, d] += (
(max(0., 0.5 - row_frac)) * max(0., col_frac - 0.5))
if valid(row + 1, col + 1):
self._view[row + 1, col + 1, d] += (
(max(0., row_frac - 0.5)) * max(0., col_frac - 0.5))
if valid(row + 1, col - 1):
self._view[row + 1, col - 1, d] += (
(max(0., row_frac - 0.5)) * max(0., 0.5 - col_frac))
# Draw ant.
robot_x, robot_y = self.wrapped_env.get_body_com("torso")[:2]
self._robot_x = robot_x
self._robot_y = robot_y
self._robot_ori = self.get_ori()
structure = self.MAZE_STRUCTURE
size_scaling = self.MAZE_SIZE_SCALING
height = self.MAZE_HEIGHT
# Draw immovable blocks and chasms.
for i in range(len(structure)):
for j in range(len(structure[0])):
if structure[i][j] == 1: # Wall.
update_view(j * size_scaling - self._init_torso_x,
i * size_scaling - self._init_torso_y,
0)
if structure[i][j] == -1: # Chasm.
update_view(j * size_scaling - self._init_torso_x,
i * size_scaling - self._init_torso_y,
1)
# Draw movable blocks.
for block_name, block_type in self.movable_blocks:
block_x, block_y = self.wrapped_env.get_body_com(block_name)[:2]
update_view(block_x, block_y, 2)
return self._view
def get_range_sensor_obs(self):
"""Returns egocentric range sensor observations of maze."""
robot_x, robot_y, robot_z = self.wrapped_env.get_body_com("torso")[:3]
ori = self.get_ori()
structure = self.MAZE_STRUCTURE
size_scaling = self.MAZE_SIZE_SCALING
height = self.MAZE_HEIGHT
segments = []
# Get line segments (corresponding to outer boundary) of each immovable
# block or drop-off.
for i in range(len(structure)):
for j in range(len(structure[0])):
if structure[i][j] in [1, -1]: # There's a wall or drop-off.
cx = j * size_scaling - self._init_torso_x
cy = i * size_scaling - self._init_torso_y
x1 = cx - 0.5 * size_scaling
x2 = cx + 0.5 * size_scaling
y1 = cy - 0.5 * size_scaling
y2 = cy + 0.5 * size_scaling
struct_segments = [
((x1, y1), (x2, y1)),
((x2, y1), (x2, y2)),
((x2, y2), (x1, y2)),
((x1, y2), (x1, y1)),
]
for seg in struct_segments:
segments.append(dict(
segment=seg,
type=structure[i][j],
))
# Get line segments (corresponding to outer boundary) of each movable
# block within the agent's z-view.
for block_name, block_type in self.movable_blocks:
block_x, block_y, block_z = self.wrapped_env.get_body_com(block_name)[:3]
if (block_z + height * size_scaling / 2 >= robot_z and
robot_z >= block_z - height * size_scaling / 2): # Block in view.
x1 = block_x - 0.5 * size_scaling
x2 = block_x + 0.5 * size_scaling
y1 = block_y - 0.5 * size_scaling
y2 = block_y + 0.5 * size_scaling
struct_segments = [
((x1, y1), (x2, y1)),
((x2, y1), (x2, y2)),
((x2, y2), (x1, y2)),
((x1, y2), (x1, y1)),
]
for seg in struct_segments:
segments.append(dict(
segment=seg,
type=block_type,
))
sensor_readings = np.zeros((self._n_bins, 3)) # 3 for wall, drop-off, block
for ray_idx in range(self._n_bins):
ray_ori = (ori - self._sensor_span * 0.5 +
(2 * ray_idx + 1.0) / (2 * self._n_bins) * self._sensor_span)
ray_segments = []
# Get all segments that intersect with ray.
for seg in segments:
p = maze_env_utils.ray_segment_intersect(
ray=((robot_x, robot_y), ray_ori),
segment=seg["segment"])
if p is not None:
ray_segments.append(dict(
segment=seg["segment"],
type=seg["type"],
ray_ori=ray_ori,
distance=maze_env_utils.point_distance(p, (robot_x, robot_y)),
))
if len(ray_segments) > 0:
# Find out which segment is intersected first.
first_seg = sorted(ray_segments, key=lambda x: x["distance"])[0]
seg_type = first_seg["type"]
idx = (0 if seg_type == 1 else # Wall.
1 if seg_type == -1 else # Drop-off.
2 if maze_env_utils.can_move(seg_type) else # Block.
None)
if first_seg["distance"] <= self._sensor_range:
sensor_readings[ray_idx][idx] = (self._sensor_range - first_seg["distance"]) / self._sensor_range
return sensor_readings
def _get_obs(self):
wrapped_obs = self.wrapped_env._get_obs()
if self._top_down_view:
view = [self.get_top_down_view().flat]
else:
view = []
if self._observe_blocks:
additional_obs = []
for block_name, block_type in self.movable_blocks:
additional_obs.append(self.wrapped_env.get_body_com(block_name))
wrapped_obs = np.concatenate([wrapped_obs[:3]] + additional_obs +
[wrapped_obs[3:]])
range_sensor_obs = self.get_range_sensor_obs()
return np.concatenate([wrapped_obs,
range_sensor_obs.flat] +
view + [[self.t * 0.001]])
def reset(self):
self.t = 0
self.trajectory = []
self.wrapped_env.reset()
if len(self._init_positions) > 1:
xy = random.choice(self._init_positions)
self.wrapped_env.set_xy(xy)
return self._get_obs()
@property
def viewer(self):
return self.wrapped_env.viewer
def render(self, *args, **kwargs):
return self.wrapped_env.render(*args, **kwargs)
@property
def observation_space(self):
shape = self._get_obs().shape
high = np.inf * np.ones(shape)
low = -high
return gym.spaces.Box(low, high)
@property
def action_space(self):
return self.wrapped_env.action_space
def _find_robot(self):
structure = self.MAZE_STRUCTURE
size_scaling = self.MAZE_SIZE_SCALING
for i in range(len(structure)):
for j in range(len(structure[0])):
if structure[i][j] == 'r':
return j * size_scaling, i * size_scaling
assert False, 'No robot in maze specification.'
def _find_all_robots(self):
structure = self.MAZE_STRUCTURE
size_scaling = self.MAZE_SIZE_SCALING
coords = []
for i in range(len(structure)):
for j in range(len(structure[0])):
if structure[i][j] == 'r':
coords.append((j * size_scaling, i * size_scaling))
return coords
def _is_in_collision(self, pos):
x, y = pos
structure = self.MAZE_STRUCTURE
size_scaling = self.MAZE_SIZE_SCALING
for i in range(len(structure)):
for j in range(len(structure[0])):
if structure[i][j] == 1:
minx = j * size_scaling - size_scaling * 0.5 - self._init_torso_x
maxx = j * size_scaling + size_scaling * 0.5 - self._init_torso_x
miny = i * size_scaling - size_scaling * 0.5 - self._init_torso_y
maxy = i * size_scaling + size_scaling * 0.5 - self._init_torso_y
if minx <= x <= maxx and miny <= y <= maxy:
return True
return False
def step(self, action):
self.t += 1
if self._manual_collision:
old_pos = self.wrapped_env.get_xy()
inner_next_obs, inner_reward, done, info = self.wrapped_env.step(action)
new_pos = self.wrapped_env.get_xy()
if self._is_in_collision(new_pos):
self.wrapped_env.set_xy(old_pos)
else:
inner_next_obs, inner_reward, done, info = self.wrapped_env.step(action)
next_obs = self._get_obs()
done = False
return next_obs, inner_reward, done, info
|