File size: 4,001 Bytes
97b6013 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 |
# Copyright 2018 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Adapted from rllab maze_env_utils.py."""
import numpy as np
import math
class Move(object):
X = 11
Y = 12
Z = 13
XY = 14
XZ = 15
YZ = 16
XYZ = 17
SpinXY = 18
def can_move_x(movable):
return movable in [Move.X, Move.XY, Move.XZ, Move.XYZ,
Move.SpinXY]
def can_move_y(movable):
return movable in [Move.Y, Move.XY, Move.YZ, Move.XYZ,
Move.SpinXY]
def can_move_z(movable):
return movable in [Move.Z, Move.XZ, Move.YZ, Move.XYZ]
def can_spin(movable):
return movable in [Move.SpinXY]
def can_move(movable):
return can_move_x(movable) or can_move_y(movable) or can_move_z(movable)
def construct_maze(maze_id='Maze'):
if maze_id == 'Maze':
structure = [
[1, 1, 1, 1, 1],
[1, 'r', 0, 0, 1],
[1, 1, 1, 0, 1],
[1, 0, 0, 0, 1],
[1, 1, 1, 1, 1],
]
elif maze_id == 'Push':
structure = [
[1, 1, 1, 1, 1],
[1, 0, 'r', 1, 1],
[1, 0, Move.XY, 0, 1],
[1, 1, 0, 1, 1],
[1, 1, 1, 1, 1],
]
elif maze_id == 'Fall':
structure = [
[1, 1, 1, 1],
[1, 'r', 0, 1],
[1, 0, Move.YZ, 1],
[1, -1, -1, 1],
[1, 0, 0, 1],
[1, 1, 1, 1],
]
elif maze_id == 'Block':
O = 'r'
structure = [
[1, 1, 1, 1, 1],
[1, O, 0, 0, 1],
[1, 0, 0, 0, 1],
[1, 0, 0, 0, 1],
[1, 1, 1, 1, 1],
]
elif maze_id == 'BlockMaze':
O = 'r'
structure = [
[1, 1, 1, 1],
[1, O, 0, 1],
[1, 1, 0, 1],
[1, 0, 0, 1],
[1, 1, 1, 1],
]
else:
raise NotImplementedError('The provided MazeId %s is not recognized' % maze_id)
return structure
def line_intersect(pt1, pt2, ptA, ptB):
"""
Taken from https://www.cs.hmc.edu/ACM/lectures/intersections.html
this returns the intersection of Line(pt1,pt2) and Line(ptA,ptB)
"""
DET_TOLERANCE = 0.00000001
# the first line is pt1 + r*(pt2-pt1)
# in component form:
x1, y1 = pt1
x2, y2 = pt2
dx1 = x2 - x1
dy1 = y2 - y1
# the second line is ptA + s*(ptB-ptA)
x, y = ptA
xB, yB = ptB
dx = xB - x
dy = yB - y
DET = (-dx1 * dy + dy1 * dx)
if math.fabs(DET) < DET_TOLERANCE: return (0, 0, 0, 0, 0)
# now, the determinant should be OK
DETinv = 1.0 / DET
# find the scalar amount along the "self" segment
r = DETinv * (-dy * (x - x1) + dx * (y - y1))
# find the scalar amount along the input line
s = DETinv * (-dy1 * (x - x1) + dx1 * (y - y1))
# return the average of the two descriptions
xi = (x1 + r * dx1 + x + s * dx) / 2.0
yi = (y1 + r * dy1 + y + s * dy) / 2.0
return (xi, yi, 1, r, s)
def ray_segment_intersect(ray, segment):
"""
Check if the ray originated from (x, y) with direction theta intersects the line segment (x1, y1) -- (x2, y2),
and return the intersection point if there is one
"""
(x, y), theta = ray
# (x1, y1), (x2, y2) = segment
pt1 = (x, y)
len = 1
pt2 = (x + len * math.cos(theta), y + len * math.sin(theta))
xo, yo, valid, r, s = line_intersect(pt1, pt2, *segment)
if valid and r >= 0 and 0 <= s <= 1:
return (xo, yo)
return None
def point_distance(p1, p2):
x1, y1 = p1
x2, y2 = p2
return ((x1 - x2) ** 2 + (y1 - y2) ** 2) ** 0.5
|