File size: 4,062 Bytes
97b6013 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 |
# Copyright 2018 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Random policy on an environment."""
import tensorflow as tf
import numpy as np
import random
from environments import create_maze_env
app = tf.app
flags = tf.flags
logging = tf.logging
FLAGS = flags.FLAGS
flags.DEFINE_string('env', 'AntMaze', 'environment name: AntMaze, AntPush, or AntFall')
flags.DEFINE_integer('episode_length', 500, 'episode length')
flags.DEFINE_integer('num_episodes', 50, 'number of episodes')
def get_goal_sample_fn(env_name):
if env_name == 'AntMaze':
# NOTE: When evaluating (i.e. the metrics shown in the paper,
# we use the commented out goal sampling function. The uncommented
# one is only used for training.
#return lambda: np.array([0., 16.])
return lambda: np.random.uniform((-4, -4), (20, 20))
elif env_name == 'AntPush':
return lambda: np.array([0., 19.])
elif env_name == 'AntFall':
return lambda: np.array([0., 27., 4.5])
else:
assert False, 'Unknown env'
def get_reward_fn(env_name):
if env_name == 'AntMaze':
return lambda obs, goal: -np.sum(np.square(obs[:2] - goal)) ** 0.5
elif env_name == 'AntPush':
return lambda obs, goal: -np.sum(np.square(obs[:2] - goal)) ** 0.5
elif env_name == 'AntFall':
return lambda obs, goal: -np.sum(np.square(obs[:3] - goal)) ** 0.5
else:
assert False, 'Unknown env'
def success_fn(last_reward):
return last_reward > -5.0
class EnvWithGoal(object):
def __init__(self, base_env, env_name):
self.base_env = base_env
self.goal_sample_fn = get_goal_sample_fn(env_name)
self.reward_fn = get_reward_fn(env_name)
self.goal = None
def reset(self):
obs = self.base_env.reset()
self.goal = self.goal_sample_fn()
return np.concatenate([obs, self.goal])
def step(self, a):
obs, _, done, info = self.base_env.step(a)
reward = self.reward_fn(obs, self.goal)
return np.concatenate([obs, self.goal]), reward, done, info
@property
def action_space(self):
return self.base_env.action_space
def run_environment(env_name, episode_length, num_episodes):
env = EnvWithGoal(
create_maze_env.create_maze_env(env_name).gym,
env_name)
def action_fn(obs):
action_space = env.action_space
action_space_mean = (action_space.low + action_space.high) / 2.0
action_space_magn = (action_space.high - action_space.low) / 2.0
random_action = (action_space_mean +
action_space_magn *
np.random.uniform(low=-1.0, high=1.0,
size=action_space.shape))
return random_action
rewards = []
successes = []
for ep in range(num_episodes):
rewards.append(0.0)
successes.append(False)
obs = env.reset()
for _ in range(episode_length):
obs, reward, done, _ = env.step(action_fn(obs))
rewards[-1] += reward
successes[-1] = success_fn(reward)
if done:
break
logging.info('Episode %d reward: %.2f, Success: %d', ep + 1, rewards[-1], successes[-1])
logging.info('Average Reward over %d episodes: %.2f',
num_episodes, np.mean(rewards))
logging.info('Average Success over %d episodes: %.2f',
num_episodes, np.mean(successes))
def main(unused_argv):
logging.set_verbosity(logging.INFO)
run_environment(FLAGS.env, FLAGS.episode_length, FLAGS.num_episodes)
if __name__ == '__main__':
app.run()
|