File size: 7,138 Bytes
97b6013
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
# Copyright 2018 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

"""Provides data from video object segmentation datasets.

This file provides both images and annotations (instance segmentations) for
TensorFlow. Currently, we support the following datasets:

1. DAVIS 2017 (https://davischallenge.org/davis2017/code.html).

2. DAVIS 2016 (https://davischallenge.org/davis2016/code.html).

3. YouTube-VOS (https://youtube-vos.org/dataset/download).
"""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import collections
import os.path
import tensorflow as tf
from feelvos.datasets import tfsequence_example_decoder

slim = tf.contrib.slim
dataset = slim.dataset
tfexample_decoder = slim.tfexample_decoder


_ITEMS_TO_DESCRIPTIONS = {
    'image': 'A color image of varying height and width.',
    'labels_class': ('A semantic segmentation label whose size matches image.'
                     'Its values range from 0 (background) to num_classes.'),
}

# Named tuple to describe the dataset properties.
DatasetDescriptor = collections.namedtuple(
    'DatasetDescriptor',
    ['splits_to_sizes',   # Splits of the dataset into training, val, and test.
     'num_classes',   # Number of semantic classes.
     'ignore_label',  # Ignore label value.
    ]
)

_DAVIS_2016_INFORMATION = DatasetDescriptor(
    splits_to_sizes={'train': [30, 1830],
                     'val': [20, 1376]},
    num_classes=2,
    ignore_label=255,
)

_DAVIS_2017_INFORMATION = DatasetDescriptor(
    splits_to_sizes={'train': [60, 4219],
                     'val': [30, 2023],
                     'test-dev': [30, 2037]},
    num_classes=None,  # Number of instances per videos differ.
    ignore_label=255,
)

_YOUTUBE_VOS_2018_INFORMATION = DatasetDescriptor(
    # Leave these sizes as None to allow for different splits into
    # training and validation sets.
    splits_to_sizes={'train': [None, None],
                     'val': [None, None]},
    num_classes=None,  # Number of instances per video differs.
    ignore_label=255,
)

_DATASETS_INFORMATION = {
    'davis_2016': _DAVIS_2016_INFORMATION,
    'davis_2017': _DAVIS_2017_INFORMATION,
    'youtube_vos_2018': _YOUTUBE_VOS_2018_INFORMATION,
}

# Default file pattern of SSTable. Note we include '-' to avoid the confusion
# between `train-` and `trainval-` sets.
_FILE_PATTERN = '%s-*'


def get_dataset(dataset_name,
                split_name,
                dataset_dir,
                file_pattern=None,
                data_type='tf_sequence_example',
                decode_video_frames=False):
  """Gets an instance of slim Dataset.

  Args:
    dataset_name: String, dataset name.
    split_name: String, the train/val Split name.
    dataset_dir: String, the directory of the dataset sources.
    file_pattern: String, file pattern of SSTable.
    data_type: String, data type. Currently supports 'tf_example' and
      'annotated_image'.
    decode_video_frames: Boolean, decode the images or not. Not decoding it here
        is useful if we subsample later

  Returns:
    An instance of slim Dataset.

  Raises:
    ValueError: If the dataset_name or split_name is not recognized, or if
      the dataset_type is not supported.
  """
  if dataset_name not in _DATASETS_INFORMATION:
    raise ValueError('The specified dataset is not supported yet.')

  splits_to_sizes = _DATASETS_INFORMATION[dataset_name].splits_to_sizes

  if split_name not in splits_to_sizes:
    raise ValueError('data split name %s not recognized' % split_name)

  # Prepare the variables for different datasets.
  num_classes = _DATASETS_INFORMATION[dataset_name].num_classes
  ignore_label = _DATASETS_INFORMATION[dataset_name].ignore_label

  if file_pattern is None:
    file_pattern = _FILE_PATTERN
  file_pattern = os.path.join(dataset_dir, file_pattern % split_name)
  if data_type == 'tf_sequence_example':
    keys_to_context_features = {
        'image/format': tf.FixedLenFeature((), tf.string, default_value='jpeg'),
        'image/height': tf.FixedLenFeature((), tf.int64, default_value=0),
        'image/width': tf.FixedLenFeature((), tf.int64, default_value=0),
        'segmentation/object/format': tf.FixedLenFeature(
            (), tf.string, default_value='png'),
        'video_id': tf.FixedLenFeature((), tf.string, default_value='unknown')
    }
    label_name = 'class' if dataset_name == 'davis_2016' else 'object'
    keys_to_sequence_features = {
        'image/encoded': tf.FixedLenSequenceFeature((), dtype=tf.string),
        'segmentation/{}/encoded'.format(label_name):
            tf.FixedLenSequenceFeature((), tf.string),
        'segmentation/{}/encoded'.format(label_name):
            tf.FixedLenSequenceFeature((), tf.string),
    }
    items_to_handlers = {
        'height': tfexample_decoder.Tensor('image/height'),
        'width': tfexample_decoder.Tensor('image/width'),
        'video_id': tfexample_decoder.Tensor('video_id')
    }
    if decode_video_frames:
      decode_image_handler = tfexample_decoder.Image(
          image_key='image/encoded',
          format_key='image/format',
          channels=3,
          repeated=True)
      items_to_handlers['image'] = decode_image_handler
      decode_label_handler = tfexample_decoder.Image(
          image_key='segmentation/{}/encoded'.format(label_name),
          format_key='segmentation/{}/format'.format(label_name),
          channels=1,
          repeated=True)
      items_to_handlers['labels_class'] = decode_label_handler
    else:
      items_to_handlers['image/encoded'] = tfexample_decoder.Tensor(
          'image/encoded')
      items_to_handlers[
          'segmentation/object/encoded'] = tfexample_decoder.Tensor(
              'segmentation/{}/encoded'.format(label_name))
    decoder = tfsequence_example_decoder.TFSequenceExampleDecoder(
        keys_to_context_features, keys_to_sequence_features, items_to_handlers)
  else:
    raise ValueError('Unknown data type.')

  size = splits_to_sizes[split_name]
  if isinstance(size, collections.Sequence):
    num_videos = size[0]
    num_samples = size[1]
  else:
    num_videos = 0
    num_samples = size

  return dataset.Dataset(
      data_sources=file_pattern,
      reader=tf.TFRecordReader,
      decoder=decoder,
      num_samples=num_samples,
      num_videos=num_videos,
      items_to_descriptions=_ITEMS_TO_DESCRIPTIONS,
      ignore_label=ignore_label,
      num_classes=num_classes,
      name=dataset_name,
      multi_label=True)