File size: 13,834 Bytes
97b6013
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
# Copyright 2018 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

"""Utils for plotting and summarizing.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import matplotlib.gridspec as gridspec
import matplotlib.pyplot as plt
import numpy as np
import scipy

import tensorflow as tf

import models


def summarize_ess(weights, only_last_timestep=False):
  """Plots the effective sample size.

  Args:
    weights: List of length num_timesteps Tensors of shape
    [num_samples, batch_size]
  """
  num_timesteps = len(weights)
  batch_size = tf.cast(tf.shape(weights[0])[1], dtype=tf.float64)
  for i in range(num_timesteps):
    if only_last_timestep and i < num_timesteps-1: continue

    w = tf.nn.softmax(weights[i], dim=0)
    centered_weights = w - tf.reduce_mean(w, axis=0, keepdims=True)
    variance = tf.reduce_sum(tf.square(centered_weights))/(batch_size-1)
    ess = 1./tf.reduce_mean(tf.reduce_sum(tf.square(w), axis=0))
    tf.summary.scalar("ess/%d" % i, ess)
    tf.summary.scalar("ese/%d" % i, ess / batch_size)
    tf.summary.scalar("weight_variance/%d" % i, variance)


def summarize_particles(states, weights, observation, model):
  """Plots particle locations and weights.

  Args:
    states: List of length num_timesteps Tensors of shape
      [batch_size*num_particles, state_size].
    weights: List of length num_timesteps Tensors of shape [num_samples,
      batch_size]
    observation: Tensor of shape [batch_size*num_samples, state_size]
  """
  num_timesteps = len(weights)
  num_samples, batch_size = weights[0].get_shape().as_list()
  # get q0 information for plotting
  q0_dist = model.q.q_zt(observation, tf.zeros_like(states[0]), 0)
  q0_loc = q0_dist.loc[0:batch_size, 0]
  q0_scale = q0_dist.scale[0:batch_size, 0]
  # get posterior information for plotting
  post = (model.p.mixing_coeff, model.p.prior_mode_mean, model.p.variance,
          tf.reduce_sum(model.p.bs), model.p.num_timesteps)

  # Reshape states and weights to be [time, num_samples, batch_size]
  states = tf.stack(states)
  weights = tf.stack(weights)
  # normalize the weights over the sample dimension
  weights = tf.nn.softmax(weights, dim=1)
  states = tf.reshape(states, tf.shape(weights))

  ess = 1./tf.reduce_sum(tf.square(weights), axis=1)

  def _plot_states(states_batch, weights_batch, observation_batch, ess_batch, q0, post):
    """
    states: [time, num_samples, batch_size]
    weights [time, num_samples, batch_size]
    observation: [batch_size, 1]
    q0: ([batch_size], [batch_size])
    post: ...
    """
    num_timesteps, _, batch_size = states_batch.shape
    plots = []
    for i in range(batch_size):
      states = states_batch[:,:,i]
      weights = weights_batch[:,:,i]
      observation = observation_batch[i]
      ess = ess_batch[:,i]
      q0_loc = q0[0][i]
      q0_scale = q0[1][i]

      fig = plt.figure(figsize=(7, (num_timesteps + 1) * 2))
      # Each timestep gets two plots -- a bar plot and a histogram of state locs.
      # The bar plot will be bar_rows rows tall.
      # The histogram will be 1 row tall.
      # There is also 1 extra plot at the top showing the posterior and q.
      bar_rows = 8
      num_rows = (num_timesteps + 1) * (bar_rows + 1)
      gs = gridspec.GridSpec(num_rows, 1)

      # Figure out how wide to make the plot
      prior_lims = (post[1] * -2, post[1] * 2)
      q_lims = (scipy.stats.norm.ppf(0.01, loc=q0_loc, scale=q0_scale),
                scipy.stats.norm.ppf(0.99, loc=q0_loc, scale=q0_scale))
      state_width = states.max() - states.min()
      state_lims = (states.min() - state_width * 0.15,
                    states.max() + state_width * 0.15)

      lims = (min(prior_lims[0], q_lims[0], state_lims[0]),
              max(prior_lims[1], q_lims[1], state_lims[1]))
      # plot the posterior
      z0 = np.arange(lims[0], lims[1], 0.1)
      alpha, pos_mu, sigma_sq, B, T = post
      neg_mu = -pos_mu
      scale = np.sqrt((T + 1) * sigma_sq)
      p_zn = (
          alpha * scipy.stats.norm.pdf(
              observation, loc=pos_mu + B, scale=scale) + (1 - alpha) *
          scipy.stats.norm.pdf(observation, loc=neg_mu + B, scale=scale))
      p_z0 = (
          alpha * scipy.stats.norm.pdf(z0, loc=pos_mu, scale=np.sqrt(sigma_sq))
          + (1 - alpha) * scipy.stats.norm.pdf(
              z0, loc=neg_mu, scale=np.sqrt(sigma_sq)))
      p_zn_given_z0 = scipy.stats.norm.pdf(
          observation, loc=z0 + B, scale=np.sqrt(T * sigma_sq))
      post_z0 = (p_z0 * p_zn_given_z0) / p_zn
      # plot q
      q_z0 = scipy.stats.norm.pdf(z0, loc=q0_loc, scale=q0_scale)
      ax = plt.subplot(gs[0:bar_rows, :])
      ax.plot(z0, q_z0, color="blue")
      ax.plot(z0, post_z0, color="green")
      ax.plot(z0, p_z0, color="red")
      ax.legend(("q", "posterior", "prior"), loc="best", prop={"size": 10})

      ax.set_xticks([])
      ax.set_xlim(*lims)

      # plot the states
      for t in range(num_timesteps):
        start = (t + 1) * (bar_rows + 1)
        ax1 = plt.subplot(gs[start:start + bar_rows, :])
        ax2 = plt.subplot(gs[start + bar_rows:start + bar_rows + 1, :])
        # plot the states barplot
        # ax1.hist(
        #     states[t, :],
        #     weights=weights[t, :],
        #     bins=50,
        #     edgecolor="none",
        #     alpha=0.2)
        ax1.bar(states[t,:], weights[t,:], width=0.02, alpha=0.2, edgecolor = "none")
        ax1.set_ylabel("t=%d" % t)
        ax1.set_xticks([])
        ax1.grid(True, which="both")
        ax1.set_xlim(*lims)
        # plot the observation
        ax1.axvline(x=observation, color="red", linestyle="dashed")
        # add the ESS
        ax1.text(0.1, 0.9, "ESS: %0.2f" % ess[t],
                 ha='center', va='center', transform=ax1.transAxes)

        # plot the state location histogram
        ax2.hist2d(
            states[t, :], np.zeros_like(states[t, :]), bins=[50, 1], cmap="Greys")
        ax2.grid(False)
        ax2.set_yticks([])
        ax2.set_xlim(*lims)
        if t != num_timesteps - 1:
          ax2.set_xticks([])

      fig.canvas.draw()
      p = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep="")
      plots.append(p.reshape(fig.canvas.get_width_height()[::-1] + (3,)))
      plt.close(fig)
    return np.stack(plots)

  plots = tf.py_func(_plot_states,
                     [states, weights, observation, ess, (q0_loc, q0_scale), post],
                     [tf.uint8])[0]
  tf.summary.image("states", plots, 5, collections=["infrequent_summaries"])


def plot_weights(weights, resampled=None):
  """Plots the weights and effective sample size from an SMC rollout.

  Args:
    weights: [num_timesteps, num_samples, batch_size] importance weights
    resampled: [num_timesteps] 0/1 indicating if resampling ocurred
  """
  weights = tf.convert_to_tensor(weights)

  def _make_plots(weights, resampled):
    num_timesteps, num_samples, batch_size = weights.shape
    plots = []
    for i in range(batch_size):
      fig, axes = plt.subplots(nrows=1, sharex=True, figsize=(8, 4))
      axes.stackplot(np.arange(num_timesteps), np.transpose(weights[:, :, i]))
      axes.set_title("Weights")
      axes.set_xlabel("Steps")
      axes.set_ylim([0, 1])
      axes.set_xlim([0, num_timesteps - 1])
      for j in np.where(resampled > 0)[0]:
        axes.axvline(x=j, color="red", linestyle="dashed", ymin=0.0, ymax=1.0)
      fig.canvas.draw()
      data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep="")
      data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
      plots.append(data)
      plt.close(fig)
    return np.stack(plots, axis=0)

  if resampled is None:
    num_timesteps, _, batch_size = weights.get_shape().as_list()
    resampled = tf.zeros([num_timesteps], dtype=tf.float32)
  plots = tf.py_func(_make_plots,
                     [tf.nn.softmax(weights, dim=1),
                      tf.to_float(resampled)], [tf.uint8])[0]
  batch_size = weights.get_shape().as_list()[-1]
  tf.summary.image(
      "weights", plots, batch_size, collections=["infrequent_summaries"])


def summarize_weights(weights, num_timesteps, num_samples):
  # weights is [num_timesteps, num_samples, batch_size]
  weights = tf.convert_to_tensor(weights)
  mean = tf.reduce_mean(weights, axis=1, keepdims=True)
  squared_diff = tf.square(weights - mean)
  variances = tf.reduce_sum(squared_diff, axis=1) / (num_samples - 1)
  # average the variance over the batch
  variances = tf.reduce_mean(variances, axis=1)
  avg_magnitude = tf.reduce_mean(tf.abs(weights), axis=[1, 2])
  for t in xrange(num_timesteps):
    tf.summary.scalar("weights/variance_%d" % t, variances[t])
    tf.summary.scalar("weights/magnitude_%d" % t, avg_magnitude[t])
    tf.summary.histogram("weights/step_%d" % t, weights[t])


def summarize_learning_signal(rewards, tag):
  num_resampling_events, _ = rewards.get_shape().as_list()
  mean = tf.reduce_mean(rewards, axis=1)
  avg_magnitude = tf.reduce_mean(tf.abs(rewards), axis=1)
  reward_square = tf.reduce_mean(tf.square(rewards), axis=1)
  for t in xrange(num_resampling_events):
    tf.summary.scalar("%s/mean_%d" % (tag, t), mean[t])
    tf.summary.scalar("%s/magnitude_%d" % (tag, t), avg_magnitude[t])
    tf.summary.scalar("%s/squared_%d" % (tag, t), reward_square[t])
    tf.summary.histogram("%s/step_%d" % (tag, t), rewards[t])


def summarize_qs(model, observation, states):
  model.q.summarize_weights()
  if hasattr(model.p, "posterior") and callable(getattr(model.p, "posterior")):
    states = [tf.zeros_like(states[0])] + states[:-1]
    for t, prev_state in enumerate(states):
      p = model.p.posterior(observation, prev_state, t)
      q = model.q.q_zt(observation, prev_state, t)
      kl = tf.reduce_mean(tf.contrib.distributions.kl_divergence(p, q))
      tf.summary.scalar("kl_q/%d" % t, tf.reduce_mean(kl))
      mean_diff = q.loc - p.loc
      mean_abs_err = tf.abs(mean_diff)
      mean_rel_err = tf.abs(mean_diff / p.loc)
      tf.summary.scalar("q_mean_convergence/absolute_error_%d" % t,
                        tf.reduce_mean(mean_abs_err))
      tf.summary.scalar("q_mean_convergence/relative_error_%d" % t,
                        tf.reduce_mean(mean_rel_err))
      sigma_diff = tf.square(q.scale) - tf.square(p.scale)
      sigma_abs_err = tf.abs(sigma_diff)
      sigma_rel_err = tf.abs(sigma_diff / tf.square(p.scale))
      tf.summary.scalar("q_variance_convergence/absolute_error_%d" % t,
                        tf.reduce_mean(sigma_abs_err))
      tf.summary.scalar("q_variance_convergence/relative_error_%d" % t,
                        tf.reduce_mean(sigma_rel_err))


def summarize_rs(model, states):
  model.r.summarize_weights()
  for t, state in enumerate(states):
    true_r = model.p.lookahead(state, t)
    r = model.r.r_xn(state, t)
    kl = tf.reduce_mean(tf.contrib.distributions.kl_divergence(true_r, r))
    tf.summary.scalar("kl_r/%d" % t, tf.reduce_mean(kl))
    mean_diff = true_r.loc - r.loc
    mean_abs_err = tf.abs(mean_diff)
    mean_rel_err = tf.abs(mean_diff / true_r.loc)
    tf.summary.scalar("r_mean_convergence/absolute_error_%d" % t,
                      tf.reduce_mean(mean_abs_err))
    tf.summary.scalar("r_mean_convergence/relative_error_%d" % t,
                      tf.reduce_mean(mean_rel_err))
    sigma_diff = tf.square(r.scale) - tf.square(true_r.scale)
    sigma_abs_err = tf.abs(sigma_diff)
    sigma_rel_err = tf.abs(sigma_diff / tf.square(true_r.scale))
    tf.summary.scalar("r_variance_convergence/absolute_error_%d" % t,
                      tf.reduce_mean(sigma_abs_err))
    tf.summary.scalar("r_variance_convergence/relative_error_%d" % t,
                      tf.reduce_mean(sigma_rel_err))


def summarize_model(model, true_bs, observation, states, bound, summarize_r=True):
  if hasattr(model.p, "bs"):
    model_b = tf.reduce_sum(model.p.bs, axis=0)
    true_b = tf.reduce_sum(true_bs, axis=0)
    abs_err = tf.abs(model_b - true_b)
    rel_err = abs_err / true_b
    tf.summary.scalar("sum_of_bs/data_generating_process", tf.reduce_mean(true_b))
    tf.summary.scalar("sum_of_bs/model", tf.reduce_mean(model_b))
    tf.summary.scalar("sum_of_bs/absolute_error", tf.reduce_mean(abs_err))
    tf.summary.scalar("sum_of_bs/relative_error", tf.reduce_mean(rel_err))
  #summarize_qs(model, observation, states)
  #if bound == "fivo-aux" and summarize_r:
  #  summarize_rs(model, states)


def summarize_grads(grads, loss_name):
  grad_ema = tf.train.ExponentialMovingAverage(decay=0.99)
  vectorized_grads = tf.concat(
      [tf.reshape(g, [-1]) for g, _ in grads if g is not None], axis=0)
  new_second_moments = tf.square(vectorized_grads)
  new_first_moments = vectorized_grads
  maintain_grad_ema_op = grad_ema.apply([new_first_moments, new_second_moments])
  first_moments = grad_ema.average(new_first_moments)
  second_moments = grad_ema.average(new_second_moments)
  variances = second_moments - tf.square(first_moments)
  tf.summary.scalar("grad_variance/%s" % loss_name, tf.reduce_mean(variances))
  tf.summary.histogram("grad_variance/%s" % loss_name, variances)
  tf.summary.histogram("grad_mean/%s" % loss_name, first_moments)
  return maintain_grad_ema_op