File size: 2,431 Bytes
97b6013
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
# Copyright 2017 Google, Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

"""Custom RNN cells for hierarchical RNNs."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import tensorflow as tf

from learned_optimizer.optimizer import utils


class BiasGRUCell(tf.contrib.rnn.RNNCell):
  """GRU cell (cf. http://arxiv.org/abs/1406.1078) with an additional bias."""

  def __init__(self, num_units, activation=tf.tanh, scale=0.1,
               gate_bias_init=0., random_seed=None):
    self._num_units = num_units
    self._activation = activation
    self._scale = scale
    self._gate_bias_init = gate_bias_init
    self._random_seed = random_seed

  @property
  def state_size(self):
    return self._num_units

  @property
  def output_size(self):
    return self._num_units

  def __call__(self, inputs, state, bias=None):
    # Split the injected bias vector into a bias for the r, u, and c updates.
    if bias is None:
      bias = tf.zeros((1, 3))

    r_bias, u_bias, c_bias = tf.split(bias, 3, 1)

    with tf.variable_scope(type(self).__name__):  # "BiasGRUCell"
      with tf.variable_scope("gates"):  # Reset gate and update gate.
        proj = utils.affine([inputs, state], 2 * self._num_units,
                            scale=self._scale, bias_init=self._gate_bias_init,
                            random_seed=self._random_seed)
        r_lin, u_lin = tf.split(proj, 2, 1)
        r, u = tf.nn.sigmoid(r_lin + r_bias), tf.nn.sigmoid(u_lin + u_bias)

      with tf.variable_scope("candidate"):
        proj = utils.affine([inputs, r * state], self._num_units,
                            scale=self._scale, random_seed=self._random_seed)
        c = self._activation(proj + c_bias)

      new_h = u * state + (1 - u) * c

    return new_h, new_h