File size: 18,668 Bytes
97b6013 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 |
# Copyright 2017, 2018 Google, Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""LexNET Path-based Model."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import collections
import itertools
import os
import lexnet_common
import numpy as np
import tensorflow as tf
class PathBasedModel(object):
"""The LexNET path-based model for classifying semantic relations."""
@classmethod
def default_hparams(cls):
"""Returns the default hyper-parameters."""
return tf.contrib.training.HParams(
max_path_len=8,
num_classes=37,
num_epochs=30,
input_keep_prob=0.9,
learning_rate=0.001,
learn_lemmas=False,
random_seed=133, # zero means no random seed
lemma_embeddings_file='glove/glove.6B.50d.bin',
num_pos=len(lexnet_common.POSTAGS),
num_dep=len(lexnet_common.DEPLABELS),
num_directions=len(lexnet_common.DIRS),
lemma_dim=50,
pos_dim=4,
dep_dim=5,
dir_dim=1)
def __init__(self, hparams, lemma_embeddings, instance):
"""Initialize the LexNET classifier.
Args:
hparams: the hyper-parameters.
lemma_embeddings: word embeddings for the path-based component.
instance: string tensor containing the input instance
"""
self.hparams = hparams
self.lemma_embeddings = lemma_embeddings
self.instance = instance
self.vocab_size, self.lemma_dim = self.lemma_embeddings.shape
# Set the random seed
if hparams.random_seed > 0:
tf.set_random_seed(hparams.random_seed)
# Create the network
self.__create_computation_graph__()
def __create_computation_graph__(self):
"""Initialize the model and define the graph."""
self.lstm_input_dim = sum([self.hparams.lemma_dim, self.hparams.pos_dim,
self.hparams.dep_dim, self.hparams.dir_dim])
self.lstm_output_dim = self.lstm_input_dim
network_input = self.lstm_output_dim
self.lemma_lookup = tf.get_variable(
'lemma_lookup',
initializer=self.lemma_embeddings,
dtype=tf.float32,
trainable=self.hparams.learn_lemmas)
self.pos_lookup = tf.get_variable(
'pos_lookup',
shape=[self.hparams.num_pos, self.hparams.pos_dim],
dtype=tf.float32)
self.dep_lookup = tf.get_variable(
'dep_lookup',
shape=[self.hparams.num_dep, self.hparams.dep_dim],
dtype=tf.float32)
self.dir_lookup = tf.get_variable(
'dir_lookup',
shape=[self.hparams.num_directions, self.hparams.dir_dim],
dtype=tf.float32)
self.weights1 = tf.get_variable(
'W1',
shape=[network_input, self.hparams.num_classes],
dtype=tf.float32)
self.bias1 = tf.get_variable(
'b1',
shape=[self.hparams.num_classes],
dtype=tf.float32)
# Define the variables
(self.batch_paths,
self.path_counts,
self.seq_lengths,
self.path_strings,
self.batch_labels) = _parse_tensorflow_example(
self.instance, self.hparams.max_path_len, self.hparams.input_keep_prob)
# Create the LSTM
self.__lstm__()
# Create the MLP
self.__mlp__()
self.instances_to_load = tf.placeholder(dtype=tf.string, shape=[None])
self.labels_to_load = lexnet_common.load_all_labels(self.instances_to_load)
def load_labels(self, session, batch_instances):
"""Loads the labels of the current instances.
Args:
session: the current TensorFlow session.
batch_instances: the dataset instances.
Returns:
the labels.
"""
return session.run(self.labels_to_load,
feed_dict={self.instances_to_load: batch_instances})
def run_one_epoch(self, session, num_steps):
"""Train the model.
Args:
session: The current TensorFlow session.
num_steps: The number of steps in each epoch.
Returns:
The mean loss for the epoch.
Raises:
ArithmeticError: if the loss becomes non-finite.
"""
losses = []
for step in range(num_steps):
curr_loss, _ = session.run([self.cost, self.train_op])
if not np.isfinite(curr_loss):
raise ArithmeticError('nan loss at step %d' % step)
losses.append(curr_loss)
return np.mean(losses)
def predict(self, session, inputs):
"""Predict the classification of the test set.
Args:
session: The current TensorFlow session.
inputs: the train paths, x, y and/or nc vectors
Returns:
The test predictions.
"""
predictions, _ = zip(*self.predict_with_score(session, inputs))
return np.array(predictions)
def predict_with_score(self, session, inputs):
"""Predict the classification of the test set.
Args:
session: The current TensorFlow session.
inputs: the test paths, x, y and/or nc vectors
Returns:
The test predictions along with their scores.
"""
test_pred = [0] * len(inputs)
for index, instance in enumerate(inputs):
prediction, scores = session.run(
[self.predictions, self.scores],
feed_dict={self.instance: instance})
test_pred[index] = (prediction, scores[prediction])
return test_pred
def __mlp__(self):
"""Performs the MLP operations.
Returns: the prediction object to be computed in a Session
"""
# Feed the paths to the MLP: path_embeddings is
# [num_batch_paths, output_dim], and when we multiply it by W
# ([output_dim, num_classes]), we get a matrix of class distributions:
# [num_batch_paths, num_classes].
self.distributions = tf.matmul(self.path_embeddings, self.weights1)
# Now, compute weighted average on the class distributions, using the path
# frequency as weights.
# First, reshape path_freq to the same shape of distributions
self.path_freq = tf.tile(tf.expand_dims(self.path_counts, -1),
[1, self.hparams.num_classes])
# Second, multiply the distributions and frequencies element-wise.
self.weighted = tf.multiply(self.path_freq, self.distributions)
# Finally, take the average to get a tensor of shape [1, num_classes].
self.weighted_sum = tf.reduce_sum(self.weighted, 0)
self.num_paths = tf.clip_by_value(tf.reduce_sum(self.path_counts),
1, np.inf)
self.num_paths = tf.tile(tf.expand_dims(self.num_paths, -1),
[self.hparams.num_classes])
self.scores = tf.div(self.weighted_sum, self.num_paths)
self.predictions = tf.argmax(self.scores)
# Define the loss function and the optimization algorithm
self.cross_entropies = tf.nn.sparse_softmax_cross_entropy_with_logits(
logits=self.scores, labels=tf.reduce_mean(self.batch_labels))
self.cost = tf.reduce_sum(self.cross_entropies, name='cost')
self.global_step = tf.Variable(0, name='global_step', trainable=False)
self.optimizer = tf.train.AdamOptimizer()
self.train_op = self.optimizer.minimize(self.cost,
global_step=self.global_step)
def __lstm__(self):
"""Defines the LSTM operations.
Returns:
A matrix of path embeddings.
"""
lookup_tables = [self.lemma_lookup, self.pos_lookup,
self.dep_lookup, self.dir_lookup]
# Split the edges to components: list of 4 tensors
# [num_batch_paths, max_path_len, 1]
self.edge_components = tf.split(self.batch_paths, 4, axis=2)
# Look up the components embeddings and concatenate them back together
self.path_matrix = tf.concat([
tf.squeeze(tf.nn.embedding_lookup(lookup_table, component), 2)
for lookup_table, component in
zip(lookup_tables, self.edge_components)
], axis=2)
self.sequence_lengths = tf.reshape(self.seq_lengths, [-1])
# Define the LSTM.
# The input is [num_batch_paths, max_path_len, input_dim].
lstm_cell = tf.contrib.rnn.BasicLSTMCell(self.lstm_output_dim)
# The output is [num_batch_paths, max_path_len, output_dim].
self.lstm_outputs, _ = tf.nn.dynamic_rnn(
lstm_cell, self.path_matrix, dtype=tf.float32,
sequence_length=self.sequence_lengths)
# Slice the last *relevant* output for each instance ->
# [num_batch_paths, output_dim]
self.path_embeddings = _extract_last_relevant(self.lstm_outputs,
self.sequence_lengths)
def _parse_tensorflow_example(record, max_path_len, input_keep_prob):
"""Reads TensorFlow examples from a RecordReader.
Args:
record: a record with TensorFlow example.
max_path_len: the maximum path length.
input_keep_prob: 1 - the word dropout probability
Returns:
The paths and counts
"""
features = tf.parse_single_example(record, {
'lemmas':
tf.FixedLenSequenceFeature(
shape=(), dtype=tf.int64, allow_missing=True),
'postags':
tf.FixedLenSequenceFeature(
shape=(), dtype=tf.int64, allow_missing=True),
'deplabels':
tf.FixedLenSequenceFeature(
shape=(), dtype=tf.int64, allow_missing=True),
'dirs':
tf.FixedLenSequenceFeature(
shape=(), dtype=tf.int64, allow_missing=True),
'counts':
tf.FixedLenSequenceFeature(
shape=(), dtype=tf.int64, allow_missing=True),
'pathlens':
tf.FixedLenSequenceFeature(
shape=(), dtype=tf.int64, allow_missing=True),
'reprs':
tf.FixedLenSequenceFeature(
shape=(), dtype=tf.string, allow_missing=True),
'rel_id':
tf.FixedLenFeature([], dtype=tf.int64)
})
path_counts = tf.to_float(features['counts'])
seq_lengths = features['pathlens']
# Concatenate the edge components to create a path tensor:
# [max_paths_per_ins, max_path_length, 4]
lemmas = _word_dropout(
tf.reshape(features['lemmas'], [-1, max_path_len]), input_keep_prob)
paths = tf.stack(
[lemmas] + [
tf.reshape(features[f], [-1, max_path_len])
for f in ('postags', 'deplabels', 'dirs')
],
axis=-1)
path_strings = features['reprs']
# Add an empty path to pairs with no paths
paths = tf.cond(
tf.shape(paths)[0] > 0,
lambda: paths,
lambda: tf.zeros([1, max_path_len, 4], dtype=tf.int64))
# Paths are left-padded. We reverse them to make them right-padded.
#paths = tf.reverse(paths, axis=[1])
path_counts = tf.cond(
tf.shape(path_counts)[0] > 0,
lambda: path_counts,
lambda: tf.constant([1.0], dtype=tf.float32))
seq_lengths = tf.cond(
tf.shape(seq_lengths)[0] > 0,
lambda: seq_lengths,
lambda: tf.constant([1], dtype=tf.int64))
# Duplicate the label for each path
labels = tf.ones_like(path_counts, dtype=tf.int64) * features['rel_id']
return paths, path_counts, seq_lengths, path_strings, labels
def _extract_last_relevant(output, seq_lengths):
"""Get the last relevant LSTM output cell for each batch instance.
Args:
output: the LSTM outputs - a tensor with shape
[num_paths, output_dim, max_path_len]
seq_lengths: the sequences length per instance
Returns:
The last relevant LSTM output cell for each batch instance.
"""
max_length = int(output.get_shape()[1])
path_lengths = tf.clip_by_value(seq_lengths - 1, 0, max_length)
relevant = tf.reduce_sum(tf.multiply(output, tf.expand_dims(
tf.one_hot(path_lengths, max_length), -1)), 1)
return relevant
def _word_dropout(words, input_keep_prob):
"""Drops words with probability 1 - input_keep_prob.
Args:
words: a list of lemmas from the paths.
input_keep_prob: the probability to keep the word.
Returns:
The revised list where some of the words are <UNK>ed.
"""
# Create the mask: (-1) to drop, 1 to keep
prob = tf.random_uniform(tf.shape(words), 0, 1)
condition = tf.less(prob, (1 - input_keep_prob))
mask = tf.where(condition,
tf.negative(tf.ones_like(words)), tf.ones_like(words))
# We need to keep zeros (<PAD>), and change other numbers to 1 (<UNK>)
# if their mask is -1. First, we multiply the mask and the words.
# Zeros will stay zeros, and words to drop will become negative.
# Then, we change negative values to 1.
masked_words = tf.multiply(mask, words)
condition = tf.less(masked_words, 0)
dropped_words = tf.where(condition, tf.ones_like(words), words)
return dropped_words
def compute_path_embeddings(model, session, instances):
"""Compute the path embeddings for all the distinct paths.
Args:
model: The trained path-based model.
session: The current TensorFlow session.
instances: All the train, test and validation instances.
Returns:
The path to ID index and the path embeddings.
"""
# Get an index for each distinct path
path_index = collections.defaultdict(itertools.count(0).next)
path_vectors = {}
for instance in instances:
curr_path_embeddings, curr_path_strings = session.run(
[model.path_embeddings, model.path_strings],
feed_dict={model.instance: instance})
for i, path in enumerate(curr_path_strings):
if not path:
continue
# Set a new/existing index for the path
index = path_index[path]
# Save its vector
path_vectors[index] = curr_path_embeddings[i, :]
print('Number of distinct paths: %d' % len(path_index))
return path_index, path_vectors
def save_path_embeddings(model, path_vectors, path_index, embeddings_base_path):
"""Saves the path embeddings.
Args:
model: The trained path-based model.
path_vectors: The path embeddings.
path_index: A map from path to ID.
embeddings_base_path: The base directory where the embeddings are.
"""
index_range = range(max(path_index.values()) + 1)
path_matrix = [path_vectors[i] for i in index_range]
path_matrix = np.vstack(path_matrix)
# Save the path embeddings
path_vector_filename = os.path.join(
embeddings_base_path, '%d_path_vectors' % model.lstm_output_dim)
with open(path_vector_filename, 'w') as f_out:
np.save(f_out, path_matrix)
index_to_path = {i: p for p, i in path_index.iteritems()}
path_vocab = [index_to_path[i] for i in index_range]
# Save the path vocabulary
path_vocab_filename = os.path.join(
embeddings_base_path, '%d_path_vocab' % model.lstm_output_dim)
with open(path_vocab_filename, 'w') as f_out:
f_out.write('\n'.join(path_vocab))
f_out.write('\n')
print('Saved path embeddings.')
def load_path_embeddings(path_embeddings_dir, path_dim):
"""Loads pretrained path embeddings from a binary file and returns the matrix.
Args:
path_embeddings_dir: The directory for the path embeddings.
path_dim: The dimension of the path embeddings, used as prefix to the
path_vocab and path_vectors files.
Returns:
The path embeddings matrix and the path_to_index dictionary.
"""
prefix = path_embeddings_dir + '/%d' % path_dim + '_'
with open(prefix + 'path_vocab') as f_in:
vocab = f_in.read().splitlines()
vocab_size = len(vocab)
embedding_file = prefix + 'path_vectors'
print('Embedding file "%s" has %d paths' % (embedding_file, vocab_size))
with open(embedding_file) as f_in:
embeddings = np.load(f_in)
path_to_index = {p: i for i, p in enumerate(vocab)}
return embeddings, path_to_index
def get_indicative_paths(model, session, path_index, path_vectors, classes,
save_dir, k=20, threshold=0.8):
"""Gets the most indicative paths for each class.
Args:
model: The trained path-based model.
session: The current TensorFlow session.
path_index: A map from path to ID.
path_vectors: The path embeddings.
classes: The class label names.
save_dir: Where to save the paths.
k: The k for top-k paths.
threshold: The threshold above which to consider paths as indicative.
"""
# Define graph variables for this operation
p_path_embedding = tf.placeholder(dtype=tf.float32,
shape=[1, model.lstm_output_dim])
p_distributions = tf.nn.softmax(tf.matmul(p_path_embedding, model.weights1))
# Treat each path as a pair instance with a single path, and get the
# relation distribution for it. Then, take the top paths for each relation.
# This dictionary contains a relation as a key, and the value is a list of
# tuples of path index and score. A relation r will contain (p, s) if the
# path p is classified to r with a confidence of s.
prediction_per_relation = collections.defaultdict(list)
index_to_path = {i: p for p, i in path_index.iteritems()}
# Predict all the paths
for index in range(len(path_index)):
curr_path_vector = path_vectors[index]
distribution = session.run(p_distributions,
feed_dict={
p_path_embedding: np.reshape(
curr_path_vector,
[1, model.lstm_output_dim])})
distribution = distribution[0, :]
prediction = np.argmax(distribution)
prediction_per_relation[prediction].append(
(index, distribution[prediction]))
if index % 10000 == 0:
print('Classified %d/%d (%3.2f%%) of the paths' % (
index, len(path_index), 100 * index / len(path_index)))
# Retrieve k-best scoring paths for each relation
for relation_index, relation in enumerate(classes):
curr_paths = sorted(prediction_per_relation[relation_index],
key=lambda item: item[1], reverse=True)
above_t = [(p, s) for (p, s) in curr_paths if s >= threshold]
top_k = curr_paths[k+1]
relation_paths = above_t if len(above_t) > len(top_k) else top_k
paths_filename = os.path.join(save_dir, '%s.paths' % relation)
with open(paths_filename, 'w') as f_out:
for index, score in relation_paths:
print('\t'.join([index_to_path[index], str(score)]), file=f_out)
|