File size: 2,785 Bytes
97b6013
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
syntax = "proto2";

package lstm_object_detection.protos;

import "object_detection/protos/pipeline.proto";
import "lstm_object_detection/protos/quant_overrides.proto";

extend object_detection.protos.TrainEvalPipelineConfig {
  optional LstmModel lstm_model = 205743444;
  optional QuantOverrides quant_overrides = 246059837;
}

// Message for extra fields needed for configuring LSTM model.
message LstmModel {
  // Unroll length for training LSTMs.
  optional int32 train_unroll_length = 1;

  // Unroll length for evaluating LSTMs.
  optional int32 eval_unroll_length = 2;

  // Depth of the lstm feature map.
  optional int32 lstm_state_depth = 3 [default = 256];

  // Depth multipliers for multiple feature extractors. Used for interleaved
  // or ensemble model.
  repeated float depth_multipliers = 4;

  // Specifies how models are interleaved when multiple feature extractors are
  // used during training. Must be in ['RANDOM', 'RANDOM_SKIP_SMALL'].
  optional string train_interleave_method = 5 [default = 'RANDOM'];

  // Specifies how models are interleaved when multiple feature extractors are
  // used during training. Must be in ['RANDOM', 'RANDOM_SKIP', 'SKIPK'].
  optional string eval_interleave_method = 6 [default = 'SKIP9'];

  // The stride of the lstm state.
  optional int32 lstm_state_stride = 7 [default = 32];

  // Whether to flattern LSTM state and output. Note that this is typically
  // intended only to be modified internally by export_tfmini_lstd_graph_lib
  // to support flatten state for tfmini/tflite. Do not set this field in
  // the pipeline config file unless necessary.
  optional bool flatten_state = 8 [default = false];

  // Whether to apply bottleneck layer before going into LSTM gates. This
  // allows multiple feature extractors to use separate bottleneck layers
  // instead of sharing the same one so that different base model output
  // feature dimensions are not forced to be the same.
  // For example:
  // Model 1 outputs feature map f_1 of depth d_1.
  // Model 2 outputs feature map f_2 of depth d_2.
  // Pre-bottlenecking allows lstm input to be either:
  // conv(concat([f_1, h])) or conv(concat([f_2, h])).
  optional bool pre_bottleneck = 9 [default = false];

  // Normalize LSTM state, default false.
  optional bool scale_state = 10 [default = false];

  // Clip LSTM state at [0, 6], default true.
  optional bool clip_state = 11 [default = true];

  // If the model is in quantized training. This field does NOT need to be set
  // manually. Instead, it will be overridden by configs in graph_rewriter.
  optional bool is_quantized = 12 [default = false];

  // Downsample input image when using the smaller network in interleaved
  // models, default false.
  optional bool low_res = 13 [default = false];
}