File size: 4,132 Bytes
97b6013
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
# Copyright 2017 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

"""IMDB data loader and helpers."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
# Dependency imports
import numpy as np

import tensorflow as tf

FLAGS = tf.app.flags.FLAGS
tf.app.flags.DEFINE_boolean('prefix_label', True, 'Vocabulary file.')

np.set_printoptions(precision=3)
np.set_printoptions(suppress=True)

EOS_INDEX = 88892


def _read_words(filename, use_prefix=True):
  all_words = []
  sequence_example = tf.train.SequenceExample()
  for r in tf.python_io.tf_record_iterator(filename):
    sequence_example.ParseFromString(r)

    if FLAGS.prefix_label and use_prefix:
      label = sequence_example.context.feature['class'].int64_list.value[0]
      review_words = [EOS_INDEX + 1 + label]
    else:
      review_words = []
    review_words.extend([
        f.int64_list.value[0]
        for f in sequence_example.feature_lists.feature_list['token_id'].feature
    ])
    all_words.append(review_words)
  return all_words


def build_vocab(vocab_file):
  word_to_id = {}

  with tf.gfile.GFile(vocab_file, 'r') as f:
    index = 0
    for word in f:
      word_to_id[word.strip()] = index
      index += 1
    word_to_id['<eos>'] = EOS_INDEX

  return word_to_id


def imdb_raw_data(data_path=None):
  """Load IMDB raw data from data directory "data_path".
  Reads IMDB tf record files containing integer ids,
  and performs mini-batching of the inputs.
  Args:
    data_path: string path to the directory where simple-examples.tgz has
      been extracted.
  Returns:
    tuple (train_data, valid_data)
    where each of the data objects can be passed to IMDBIterator.
  """

  train_path = os.path.join(data_path, 'train_lm.tfrecords')
  valid_path = os.path.join(data_path, 'test_lm.tfrecords')

  train_data = _read_words(train_path)
  valid_data = _read_words(valid_path)
  return train_data, valid_data


def imdb_iterator(raw_data, batch_size, num_steps, epoch_size_override=None):
  """Iterate on the raw IMDB data.

  This generates batch_size pointers into the raw IMDB data, and allows
  minibatch iteration along these pointers.

  Args:
    raw_data: one of the raw data outputs from imdb_raw_data.
    batch_size: int, the batch size.
    num_steps: int, the number of unrolls.

  Yields:
    Pairs of the batched data, each a matrix of shape [batch_size, num_steps].
    The second element of the tuple is the same data time-shifted to the
    right by one. The third is a set of weights with 1 indicating a word was
    present and 0 not.

  Raises:
    ValueError: if batch_size or num_steps are too high.
  """
  del epoch_size_override
  data_len = len(raw_data)
  num_batches = data_len // batch_size - 1

  for batch in range(num_batches):
    x = np.zeros([batch_size, num_steps], dtype=np.int32)
    y = np.zeros([batch_size, num_steps], dtype=np.int32)
    w = np.zeros([batch_size, num_steps], dtype=np.float)

    for i in range(batch_size):
      data_index = batch * batch_size + i
      example = raw_data[data_index]

      if len(example) > num_steps:
        final_x = example[:num_steps]
        final_y = example[1:(num_steps + 1)]
        w[i] = 1

      else:
        to_fill_in = num_steps - len(example)
        final_x = example + [EOS_INDEX] * to_fill_in
        final_y = final_x[1:] + [EOS_INDEX]
        w[i] = [1] * len(example) + [0] * to_fill_in

      x[i] = final_x
      y[i] = final_y

    yield (x, y, w)