File size: 3,975 Bytes
97b6013
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
# Copyright 2017 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

"""PTB data loader and helpers."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import collections
import os
# Dependency imports
import numpy as np

import tensorflow as tf

EOS_INDEX = 0


def _read_words(filename):
  with tf.gfile.GFile(filename, "r") as f:
    return f.read().decode("utf-8").replace("\n", "<eos>").split()


def build_vocab(filename):
  data = _read_words(filename)

  counter = collections.Counter(data)
  count_pairs = sorted(counter.items(), key=lambda x: (-x[1], x[0]))

  words, _ = list(zip(*count_pairs))
  word_to_id = dict(zip(words, range(len(words))))
  print("<eos>:", word_to_id["<eos>"])
  global EOS_INDEX
  EOS_INDEX = word_to_id["<eos>"]

  return word_to_id


def _file_to_word_ids(filename, word_to_id):
  data = _read_words(filename)
  return [word_to_id[word] for word in data if word in word_to_id]


def ptb_raw_data(data_path=None):
  """Load PTB raw data from data directory "data_path".
  Reads PTB text files, converts strings to integer ids,
  and performs mini-batching of the inputs.
  The PTB dataset comes from Tomas Mikolov's webpage:
  http://www.fit.vutbr.cz/~imikolov/rnnlm/simple-examples.tgz
  Args:
    data_path: string path to the directory where simple-examples.tgz has
      been extracted.
  Returns:
    tuple (train_data, valid_data, test_data, vocabulary)
    where each of the data objects can be passed to PTBIterator.
  """

  train_path = os.path.join(data_path, "ptb.train.txt")
  valid_path = os.path.join(data_path, "ptb.valid.txt")
  test_path = os.path.join(data_path, "ptb.test.txt")

  word_to_id = build_vocab(train_path)
  train_data = _file_to_word_ids(train_path, word_to_id)
  valid_data = _file_to_word_ids(valid_path, word_to_id)
  test_data = _file_to_word_ids(test_path, word_to_id)
  vocabulary = len(word_to_id)
  return train_data, valid_data, test_data, vocabulary


def ptb_iterator(raw_data, batch_size, num_steps, epoch_size_override=None):
  """Iterate on the raw PTB data.

  This generates batch_size pointers into the raw PTB data, and allows
  minibatch iteration along these pointers.

  Args:
    raw_data: one of the raw data outputs from ptb_raw_data.
    batch_size: int, the batch size.
    num_steps: int, the number of unrolls.

  Yields:
    Pairs of the batched data, each a matrix of shape [batch_size, num_steps].
    The second element of the tuple is the same data time-shifted to the
    right by one.

  Raises:
    ValueError: if batch_size or num_steps are too high.
  """
  raw_data = np.array(raw_data, dtype=np.int32)

  data_len = len(raw_data)
  batch_len = data_len // batch_size
  data = np.full([batch_size, batch_len], EOS_INDEX, dtype=np.int32)
  for i in range(batch_size):
    data[i] = raw_data[batch_len * i:batch_len * (i + 1)]

  if epoch_size_override:
    epoch_size = epoch_size_override
  else:
    epoch_size = (batch_len - 1) // num_steps

  if epoch_size == 0:
    raise ValueError("epoch_size == 0, decrease batch_size or num_steps")

  # print("Number of batches per epoch: %d" % epoch_size)
  for i in range(epoch_size):
    x = data[:, i * num_steps:(i + 1) * num_steps]
    y = data[:, i * num_steps + 1:(i + 1) * num_steps + 1]
    w = np.ones_like(x)
    yield (x, y, w)