File size: 7,500 Bytes
97b6013
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
# Copyright 2017 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

"""Model optimization."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

# Dependency imports

import tensorflow as tf

FLAGS = tf.app.flags.FLAGS


def create_dis_pretrain_op(hparams, dis_loss, global_step):
  """Create a train op for pretraining."""
  with tf.name_scope('pretrain_generator'):
    optimizer = tf.train.AdamOptimizer(hparams.dis_pretrain_learning_rate)
    dis_vars = [
        v for v in tf.trainable_variables() if v.op.name.startswith('dis')
    ]
    if FLAGS.dis_update_share_embedding and FLAGS.dis_share_embedding:
      shared_embedding = [
          v for v in tf.trainable_variables()
          if v.op.name == 'gen/decoder/rnn/embedding'
      ][0]
      dis_vars.append(shared_embedding)
    dis_grads = tf.gradients(dis_loss, dis_vars)
    dis_grads_clipped, _ = tf.clip_by_global_norm(dis_grads,
                                                  FLAGS.grad_clipping)
    dis_pretrain_op = optimizer.apply_gradients(
        zip(dis_grads_clipped, dis_vars), global_step=global_step)
    return dis_pretrain_op


def create_gen_pretrain_op(hparams, cross_entropy_loss, global_step):
  """Create a train op for pretraining."""
  with tf.name_scope('pretrain_generator'):
    optimizer = tf.train.AdamOptimizer(hparams.gen_pretrain_learning_rate)
    gen_vars = [
        v for v in tf.trainable_variables() if v.op.name.startswith('gen')
    ]
    gen_grads = tf.gradients(cross_entropy_loss, gen_vars)
    gen_grads_clipped, _ = tf.clip_by_global_norm(gen_grads,
                                                  FLAGS.grad_clipping)
    gen_pretrain_op = optimizer.apply_gradients(
        zip(gen_grads_clipped, gen_vars), global_step=global_step)
    return gen_pretrain_op


def create_gen_train_op(hparams, learning_rate, gen_loss, global_step, mode):
  """Create Generator train op."""
  del hparams
  with tf.name_scope('train_generator'):
    if FLAGS.generator_optimizer == 'sgd':
      gen_optimizer = tf.train.GradientDescentOptimizer(learning_rate)
    elif FLAGS.generator_optimizer == 'adam':
      gen_optimizer = tf.train.AdamOptimizer(learning_rate)
    else:
      raise NotImplementedError
    gen_vars = [
        v for v in tf.trainable_variables() if v.op.name.startswith('gen')
    ]
    print('Optimizing Generator vars.')
    for v in gen_vars:
      print(v)
    if mode == 'MINIMIZE':
      gen_grads = tf.gradients(gen_loss, gen_vars)
    elif mode == 'MAXIMIZE':
      gen_grads = tf.gradients(-gen_loss, gen_vars)
    else:
      raise ValueError("Must be one of 'MINIMIZE' or 'MAXIMIZE'")
    gen_grads_clipped, _ = tf.clip_by_global_norm(gen_grads,
                                                  FLAGS.grad_clipping)
    gen_train_op = gen_optimizer.apply_gradients(
        zip(gen_grads_clipped, gen_vars), global_step=global_step)
    return gen_train_op, gen_grads_clipped, gen_vars


def create_reinforce_gen_train_op(hparams, learning_rate, final_gen_reward,
                                  averages_op, global_step):
  """Create the Generator train_op when using REINFORCE.

  Args:
    hparams:  MaskGAN hyperparameters.
    learning_rate:  tf.Variable scalar learning rate.
    final_gen_objective:  Scalar final REINFORCE objective for the sequence.
    averages_op:  ExponentialMovingAverage apply average op to
      maintain the baseline.
    global_step:  global_step tf.Variable.

  Returns:
    gen_train_op: Generator training op.
  """
  del hparams
  with tf.name_scope('train_generator'):
    if FLAGS.generator_optimizer == 'sgd':
      gen_optimizer = tf.train.GradientDescentOptimizer(learning_rate)
    elif FLAGS.generator_optimizer == 'adam':
      gen_optimizer = tf.train.AdamOptimizer(learning_rate)
    else:
      raise NotImplementedError
    gen_vars = [
        v for v in tf.trainable_variables() if v.op.name.startswith('gen')
    ]
    print('\nOptimizing Generator vars:')
    for v in gen_vars:
      print(v)

    # Maximize reward.
    gen_grads = tf.gradients(-final_gen_reward, gen_vars)
    gen_grads_clipped, _ = tf.clip_by_global_norm(gen_grads,
                                                  FLAGS.grad_clipping)
    maximize_op = gen_optimizer.apply_gradients(
        zip(gen_grads_clipped, gen_vars), global_step=global_step)

    # Group maintain averages op.
    if averages_op:
      gen_train_op = tf.group(maximize_op, averages_op)
    else:
      gen_train_op = maximize_op

    return [gen_train_op, gen_grads, gen_vars]


def create_dis_train_op(hparams, dis_loss, global_step):
  """Create Discriminator train op."""
  with tf.name_scope('train_discriminator'):
    dis_optimizer = tf.train.AdamOptimizer(hparams.dis_learning_rate)
    dis_vars = [
        v for v in tf.trainable_variables() if v.op.name.startswith('dis')
    ]
    if FLAGS.dis_update_share_embedding and FLAGS.dis_share_embedding:
      shared_embedding = [
          v for v in tf.trainable_variables()
          if v.op.name == 'gen/decoder/rnn/embedding'
      ][0]
      dis_vars.append(shared_embedding)
    print('\nOptimizing Discriminator vars:')
    for v in dis_vars:
      print(v)
    dis_grads = tf.gradients(dis_loss, dis_vars)
    dis_grads_clipped, _ = tf.clip_by_global_norm(dis_grads,
                                                  FLAGS.grad_clipping)
    dis_train_op = dis_optimizer.apply_gradients(
        zip(dis_grads_clipped, dis_vars), global_step=global_step)
    return dis_train_op, dis_grads_clipped, dis_vars


def create_critic_train_op(hparams, critic_loss, global_step):
  """Create Discriminator train op."""
  with tf.name_scope('train_critic'):
    critic_optimizer = tf.train.AdamOptimizer(hparams.critic_learning_rate)
    output_vars = [
        v for v in tf.trainable_variables() if v.op.name.startswith('critic')
    ]

    if FLAGS.critic_update_dis_vars:
      if FLAGS.discriminator_model == 'bidirectional_vd':
        critic_vars = [
            v for v in tf.trainable_variables()
            if v.op.name.startswith('dis/rnn')
        ]
      elif FLAGS.discriminator_model == 'seq2seq_vd':
        critic_vars = [
            v for v in tf.trainable_variables()
            if v.op.name.startswith('dis/decoder/rnn/multi_rnn_cell')
        ]
      critic_vars.extend(output_vars)
    else:
      critic_vars = output_vars
    print('\nOptimizing Critic vars:')
    for v in critic_vars:
      print(v)
    critic_grads = tf.gradients(critic_loss, critic_vars)
    critic_grads_clipped, _ = tf.clip_by_global_norm(critic_grads,
                                                     FLAGS.grad_clipping)
    critic_train_op = critic_optimizer.apply_gradients(
        zip(critic_grads_clipped, critic_vars), global_step=global_step)
    return critic_train_op, critic_grads_clipped, critic_vars