File size: 16,197 Bytes
97b6013 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 |
# Copyright 2015 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Neural GPU -- data generation and batching utilities."""
import math
import os
import random
import sys
import time
import numpy as np
from six.moves import xrange
import tensorflow as tf
import program_utils
FLAGS = tf.app.flags.FLAGS
bins = [2 + bin_idx_i for bin_idx_i in xrange(256)]
all_tasks = ["sort", "kvsort", "id", "rev", "rev2", "incr", "add", "left",
"right", "left-shift", "right-shift", "bmul", "mul", "dup",
"badd", "qadd", "search", "progeval", "progsynth"]
log_filename = ""
vocab, rev_vocab = None, None
def pad(l):
for b in bins:
if b >= l: return b
return bins[-1]
def bin_for(l):
for i, b in enumerate(bins):
if b >= l: return i
return len(bins) - 1
train_set = {}
test_set = {}
for some_task in all_tasks:
train_set[some_task] = []
test_set[some_task] = []
for all_max_len in xrange(10000):
train_set[some_task].append([])
test_set[some_task].append([])
def read_tmp_file(name):
"""Read from a file with the given name in our log directory or above."""
dirname = os.path.dirname(log_filename)
fname = os.path.join(dirname, name + ".txt")
if not tf.gfile.Exists(fname):
print_out("== not found file: " + fname)
fname = os.path.join(dirname, "../" + name + ".txt")
if not tf.gfile.Exists(fname):
print_out("== not found file: " + fname)
fname = os.path.join(dirname, "../../" + name + ".txt")
if not tf.gfile.Exists(fname):
print_out("== not found file: " + fname)
return None
print_out("== found file: " + fname)
res = []
with tf.gfile.GFile(fname, mode="r") as f:
for line in f:
res.append(line.strip())
return res
def write_tmp_file(name, lines):
dirname = os.path.dirname(log_filename)
fname = os.path.join(dirname, name + ".txt")
with tf.gfile.GFile(fname, mode="w") as f:
for line in lines:
f.write(line + "\n")
def add(n1, n2, base=10):
"""Add two numbers represented as lower-endian digit lists."""
k = max(len(n1), len(n2)) + 1
d1 = n1 + [0 for _ in xrange(k - len(n1))]
d2 = n2 + [0 for _ in xrange(k - len(n2))]
res = []
carry = 0
for i in xrange(k):
if d1[i] + d2[i] + carry < base:
res.append(d1[i] + d2[i] + carry)
carry = 0
else:
res.append(d1[i] + d2[i] + carry - base)
carry = 1
while res and res[-1] == 0:
res = res[:-1]
if res: return res
return [0]
def init_data(task, length, nbr_cases, nclass):
"""Data initialization."""
def rand_pair(l, task):
"""Random data pair for a task. Total length should be <= l."""
k = int((l-1)/2)
base = 10
if task[0] == "b": base = 2
if task[0] == "q": base = 4
d1 = [np.random.randint(base) for _ in xrange(k)]
d2 = [np.random.randint(base) for _ in xrange(k)]
if task in ["add", "badd", "qadd"]:
res = add(d1, d2, base)
elif task in ["mul", "bmul"]:
d1n = sum([d * (base ** i) for i, d in enumerate(d1)])
d2n = sum([d * (base ** i) for i, d in enumerate(d2)])
if task == "bmul":
res = [int(x) for x in list(reversed(str(bin(d1n * d2n))))[:-2]]
else:
res = [int(x) for x in list(reversed(str(d1n * d2n)))]
else:
sys.exit()
sep = [12]
if task in ["add", "badd", "qadd"]: sep = [11]
inp = [d + 1 for d in d1] + sep + [d + 1 for d in d2]
return inp, [r + 1 for r in res]
def rand_dup_pair(l):
"""Random data pair for duplication task. Total length should be <= l."""
k = int(l/2)
x = [np.random.randint(nclass - 1) + 1 for _ in xrange(k)]
inp = x + [0 for _ in xrange(l - k)]
res = x + x + [0 for _ in xrange(l - 2*k)]
return inp, res
def rand_rev2_pair(l):
"""Random data pair for reverse2 task. Total length should be <= l."""
inp = [(np.random.randint(nclass - 1) + 1,
np.random.randint(nclass - 1) + 1) for _ in xrange(l/2)]
res = [i for i in reversed(inp)]
return [x for p in inp for x in p], [x for p in res for x in p]
def rand_search_pair(l):
"""Random data pair for search task. Total length should be <= l."""
inp = [(np.random.randint(nclass - 1) + 1,
np.random.randint(nclass - 1) + 1) for _ in xrange(l-1/2)]
q = np.random.randint(nclass - 1) + 1
res = 0
for (k, v) in reversed(inp):
if k == q:
res = v
return [x for p in inp for x in p] + [q], [res]
def rand_kvsort_pair(l):
"""Random data pair for key-value sort. Total length should be <= l."""
keys = [(np.random.randint(nclass - 1) + 1, i) for i in xrange(l/2)]
vals = [np.random.randint(nclass - 1) + 1 for _ in xrange(l/2)]
kv = [(k, vals[i]) for (k, i) in keys]
sorted_kv = [(k, vals[i]) for (k, i) in sorted(keys)]
return [x for p in kv for x in p], [x for p in sorted_kv for x in p]
def prog_io_pair(prog, max_len, counter=0):
try:
ilen = np.random.randint(max_len - 3) + 1
bound = max(15 - (counter / 20), 1)
inp = [random.choice(range(-bound, bound)) for _ in range(ilen)]
inp_toks = [program_utils.prog_rev_vocab[t]
for t in program_utils.tokenize(str(inp)) if t != ","]
out = program_utils.evaluate(prog, {"a": inp})
out_toks = [program_utils.prog_rev_vocab[t]
for t in program_utils.tokenize(str(out)) if t != ","]
if counter > 400:
out_toks = []
if (out_toks and out_toks[0] == program_utils.prog_rev_vocab["["] and
len(out_toks) != len([o for o in out if o == ","]) + 3):
raise ValueError("generated list with too long ints")
if (out_toks and out_toks[0] != program_utils.prog_rev_vocab["["] and
len(out_toks) > 1):
raise ValueError("generated one int but tokenized it to many")
if len(out_toks) > max_len:
raise ValueError("output too long")
return (inp_toks, out_toks)
except ValueError:
return prog_io_pair(prog, max_len, counter+1)
def spec(inp):
"""Return the target given the input for some tasks."""
if task == "sort":
return sorted(inp)
elif task == "id":
return inp
elif task == "rev":
return [i for i in reversed(inp)]
elif task == "incr":
carry = 1
res = []
for i in xrange(len(inp)):
if inp[i] + carry < nclass:
res.append(inp[i] + carry)
carry = 0
else:
res.append(1)
carry = 1
return res
elif task == "left":
return [inp[0]]
elif task == "right":
return [inp[-1]]
elif task == "left-shift":
return [inp[l-1] for l in xrange(len(inp))]
elif task == "right-shift":
return [inp[l+1] for l in xrange(len(inp))]
else:
print_out("Unknown spec for task " + str(task))
sys.exit()
l = length
cur_time = time.time()
total_time = 0.0
is_prog = task in ["progeval", "progsynth"]
if is_prog:
inputs_per_prog = 5
program_utils.make_vocab()
progs = read_tmp_file("programs_len%d" % (l / 10))
if not progs:
progs = program_utils.gen(l / 10, 1.2 * nbr_cases / inputs_per_prog)
write_tmp_file("programs_len%d" % (l / 10), progs)
prog_ios = read_tmp_file("programs_len%d_io" % (l / 10))
nbr_cases = min(nbr_cases, len(progs) * inputs_per_prog) / 1.2
if not prog_ios:
# Generate program io data.
prog_ios = []
for pidx, prog in enumerate(progs):
if pidx % 500 == 0:
print_out("== generating io pairs for program %d" % pidx)
if pidx * inputs_per_prog > nbr_cases * 1.2:
break
ptoks = [program_utils.prog_rev_vocab[t]
for t in program_utils.tokenize(prog)]
ptoks.append(program_utils.prog_rev_vocab["_EOS"])
plen = len(ptoks)
for _ in xrange(inputs_per_prog):
if task == "progeval":
inp, out = prog_io_pair(prog, plen)
prog_ios.append(str(inp) + "\t" + str(out) + "\t" + prog)
elif task == "progsynth":
plen = max(len(ptoks), 8)
for _ in xrange(3):
inp, out = prog_io_pair(prog, plen / 2)
prog_ios.append(str(inp) + "\t" + str(out) + "\t" + prog)
write_tmp_file("programs_len%d_io" % (l / 10), prog_ios)
prog_ios_dict = {}
for s in prog_ios:
i, o, p = s.split("\t")
i_clean = "".join([c for c in i if c.isdigit() or c == " "])
o_clean = "".join([c for c in o if c.isdigit() or c == " "])
inp = [int(x) for x in i_clean.split()]
out = [int(x) for x in o_clean.split()]
if inp and out:
if p in prog_ios_dict:
prog_ios_dict[p].append([inp, out])
else:
prog_ios_dict[p] = [[inp, out]]
# Use prog_ios_dict to create data.
progs = []
for prog in prog_ios_dict:
if len([c for c in prog if c == ";"]) <= (l / 10):
progs.append(prog)
nbr_cases = min(nbr_cases, len(progs) * inputs_per_prog) / 1.2
print_out("== %d training cases on %d progs" % (nbr_cases, len(progs)))
for pidx, prog in enumerate(progs):
if pidx * inputs_per_prog > nbr_cases * 1.2:
break
ptoks = [program_utils.prog_rev_vocab[t]
for t in program_utils.tokenize(prog)]
ptoks.append(program_utils.prog_rev_vocab["_EOS"])
plen = len(ptoks)
dset = train_set if pidx < nbr_cases / inputs_per_prog else test_set
for _ in xrange(inputs_per_prog):
if task == "progeval":
inp, out = prog_ios_dict[prog].pop()
dset[task][bin_for(plen)].append([[ptoks, inp, [], []], [out]])
elif task == "progsynth":
plen, ilist = max(len(ptoks), 8), [[]]
for _ in xrange(3):
inp, out = prog_ios_dict[prog].pop()
ilist.append(inp + out)
dset[task][bin_for(plen)].append([ilist, [ptoks]])
for case in xrange(0 if is_prog else nbr_cases):
total_time += time.time() - cur_time
cur_time = time.time()
if l > 10000 and case % 100 == 1:
print_out(" avg gen time %.4f s" % (total_time / float(case)))
if task in ["add", "badd", "qadd", "bmul", "mul"]:
i, t = rand_pair(l, task)
train_set[task][bin_for(len(i))].append([[[], i, [], []], [t]])
i, t = rand_pair(l, task)
test_set[task][bin_for(len(i))].append([[[], i, [], []], [t]])
elif task == "dup":
i, t = rand_dup_pair(l)
train_set[task][bin_for(len(i))].append([[i], [t]])
i, t = rand_dup_pair(l)
test_set[task][bin_for(len(i))].append([[i], [t]])
elif task == "rev2":
i, t = rand_rev2_pair(l)
train_set[task][bin_for(len(i))].append([[i], [t]])
i, t = rand_rev2_pair(l)
test_set[task][bin_for(len(i))].append([[i], [t]])
elif task == "search":
i, t = rand_search_pair(l)
train_set[task][bin_for(len(i))].append([[i], [t]])
i, t = rand_search_pair(l)
test_set[task][bin_for(len(i))].append([[i], [t]])
elif task == "kvsort":
i, t = rand_kvsort_pair(l)
train_set[task][bin_for(len(i))].append([[i], [t]])
i, t = rand_kvsort_pair(l)
test_set[task][bin_for(len(i))].append([[i], [t]])
elif task not in ["progeval", "progsynth"]:
inp = [np.random.randint(nclass - 1) + 1 for i in xrange(l)]
target = spec(inp)
train_set[task][bin_for(l)].append([[inp], [target]])
inp = [np.random.randint(nclass - 1) + 1 for i in xrange(l)]
target = spec(inp)
test_set[task][bin_for(l)].append([[inp], [target]])
def to_symbol(i):
"""Covert ids to text."""
if i == 0: return ""
if i == 11: return "+"
if i == 12: return "*"
return str(i-1)
def to_id(s):
"""Covert text to ids."""
if s == "+": return 11
if s == "*": return 12
return int(s) + 1
def get_batch(bin_id, batch_size, data_set, height, offset=None, preset=None):
"""Get a batch of data, training or testing."""
inputs, targets = [], []
pad_length = bins[bin_id]
for b in xrange(batch_size):
if preset is None:
elem = random.choice(data_set[bin_id])
if offset is not None and offset + b < len(data_set[bin_id]):
elem = data_set[bin_id][offset + b]
else:
elem = preset
inpt, targett, inpl, targetl = elem[0], elem[1], [], []
for inp in inpt:
inpl.append(inp + [0 for _ in xrange(pad_length - len(inp))])
if len(inpl) == 1:
for _ in xrange(height - 1):
inpl.append([0 for _ in xrange(pad_length)])
for target in targett:
targetl.append(target + [0 for _ in xrange(pad_length - len(target))])
inputs.append(inpl)
targets.append(targetl)
res_input = np.array(inputs, dtype=np.int32)
res_target = np.array(targets, dtype=np.int32)
assert list(res_input.shape) == [batch_size, height, pad_length]
assert list(res_target.shape) == [batch_size, 1, pad_length]
return res_input, res_target
def print_out(s, newline=True):
"""Print a message out and log it to file."""
if log_filename:
try:
with tf.gfile.GFile(log_filename, mode="a") as f:
f.write(s + ("\n" if newline else ""))
# pylint: disable=bare-except
except:
sys.stderr.write("Error appending to %s\n" % log_filename)
sys.stdout.write(s + ("\n" if newline else ""))
sys.stdout.flush()
def decode(output):
return [np.argmax(o, axis=1) for o in output]
def accuracy(inpt_t, output, target_t, batch_size, nprint,
beam_out=None, beam_scores=None):
"""Calculate output accuracy given target."""
assert nprint < batch_size + 1
inpt = []
for h in xrange(inpt_t.shape[1]):
inpt.extend([inpt_t[:, h, l] for l in xrange(inpt_t.shape[2])])
target = [target_t[:, 0, l] for l in xrange(target_t.shape[2])]
def tok(i):
if rev_vocab and i < len(rev_vocab):
return rev_vocab[i]
return str(i - 1)
def task_print(inp, output, target):
stop_bound = 0
print_len = 0
while print_len < len(target) and target[print_len] > stop_bound:
print_len += 1
print_out(" i: " + " ".join([tok(i) for i in inp if i > 0]))
print_out(" o: " +
" ".join([tok(output[l]) for l in xrange(print_len)]))
print_out(" t: " +
" ".join([tok(target[l]) for l in xrange(print_len)]))
decoded_target = target
decoded_output = decode(output)
# Use beam output if given and score is high enough.
if beam_out is not None:
for b in xrange(batch_size):
if beam_scores[b] >= 10.0:
for l in xrange(min(len(decoded_output), beam_out.shape[2])):
decoded_output[l][b] = int(beam_out[b, 0, l])
total = 0
errors = 0
seq = [0 for b in xrange(batch_size)]
for l in xrange(len(decoded_output)):
for b in xrange(batch_size):
if decoded_target[l][b] > 0:
total += 1
if decoded_output[l][b] != decoded_target[l][b]:
seq[b] = 1
errors += 1
e = 0 # Previous error index
for _ in xrange(min(nprint, sum(seq))):
while seq[e] == 0:
e += 1
task_print([inpt[l][e] for l in xrange(len(inpt))],
[decoded_output[l][e] for l in xrange(len(decoded_target))],
[decoded_target[l][e] for l in xrange(len(decoded_target))])
e += 1
for b in xrange(nprint - errors):
task_print([inpt[l][b] for l in xrange(len(inpt))],
[decoded_output[l][b] for l in xrange(len(decoded_target))],
[decoded_target[l][b] for l in xrange(len(decoded_target))])
return errors, total, sum(seq)
def safe_exp(x):
perp = 10000
x = float(x)
if x < 100: perp = math.exp(x)
if perp > 10000: return 10000
return perp
|