File size: 33,249 Bytes
97b6013 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 |
# Copyright 2016 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Author: aneelakantan (Arvind Neelakantan)
"""
from __future__ import print_function
import numpy as np
import tensorflow as tf
import nn_utils
class Graph():
def __init__(self, utility, batch_size, max_passes, mode="train"):
self.utility = utility
self.data_type = self.utility.tf_data_type[self.utility.FLAGS.data_type]
self.max_elements = self.utility.FLAGS.max_elements
max_elements = self.utility.FLAGS.max_elements
self.num_cols = self.utility.FLAGS.max_number_cols
self.num_word_cols = self.utility.FLAGS.max_word_cols
self.question_length = self.utility.FLAGS.question_length
self.batch_size = batch_size
self.max_passes = max_passes
self.mode = mode
self.embedding_dims = self.utility.FLAGS.embedding_dims
#input question and a mask
self.batch_question = tf.placeholder(tf.int32,
[batch_size, self.question_length])
self.batch_question_attention_mask = tf.placeholder(
self.data_type, [batch_size, self.question_length])
#ground truth scalar answer and lookup answer
self.batch_answer = tf.placeholder(self.data_type, [batch_size])
self.batch_print_answer = tf.placeholder(
self.data_type,
[batch_size, self.num_cols + self.num_word_cols, max_elements])
#number columns and its processed version
self.batch_number_column = tf.placeholder(
self.data_type, [batch_size, self.num_cols, max_elements
]) #columns with numeric entries
self.batch_processed_number_column = tf.placeholder(
self.data_type, [batch_size, self.num_cols, max_elements])
self.batch_processed_sorted_index_number_column = tf.placeholder(
tf.int32, [batch_size, self.num_cols, max_elements])
#word columns and its processed version
self.batch_processed_word_column = tf.placeholder(
self.data_type, [batch_size, self.num_word_cols, max_elements])
self.batch_processed_sorted_index_word_column = tf.placeholder(
tf.int32, [batch_size, self.num_word_cols, max_elements])
self.batch_word_column_entry_mask = tf.placeholder(
tf.int32, [batch_size, self.num_word_cols, max_elements])
#names of word and number columns along with their mask
self.batch_word_column_names = tf.placeholder(
tf.int32,
[batch_size, self.num_word_cols, self.utility.FLAGS.max_entry_length])
self.batch_word_column_mask = tf.placeholder(
self.data_type, [batch_size, self.num_word_cols])
self.batch_number_column_names = tf.placeholder(
tf.int32,
[batch_size, self.num_cols, self.utility.FLAGS.max_entry_length])
self.batch_number_column_mask = tf.placeholder(self.data_type,
[batch_size, self.num_cols])
#exact match and group by max operation
self.batch_exact_match = tf.placeholder(
self.data_type,
[batch_size, self.num_cols + self.num_word_cols, max_elements])
self.batch_column_exact_match = tf.placeholder(
self.data_type, [batch_size, self.num_cols + self.num_word_cols])
self.batch_group_by_max = tf.placeholder(
self.data_type,
[batch_size, self.num_cols + self.num_word_cols, max_elements])
#numbers in the question along with their position. This is used to compute arguments to the comparison operations
self.batch_question_number = tf.placeholder(self.data_type, [batch_size, 1])
self.batch_question_number_one = tf.placeholder(self.data_type,
[batch_size, 1])
self.batch_question_number_mask = tf.placeholder(
self.data_type, [batch_size, max_elements])
self.batch_question_number_one_mask = tf.placeholder(self.data_type,
[batch_size, 1])
self.batch_ordinal_question = tf.placeholder(
self.data_type, [batch_size, self.question_length])
self.batch_ordinal_question_one = tf.placeholder(
self.data_type, [batch_size, self.question_length])
def LSTM_question_embedding(self, sentence, sentence_length):
#LSTM processes the input question
lstm_params = "question_lstm"
hidden_vectors = []
sentence = self.batch_question
question_hidden = tf.zeros(
[self.batch_size, self.utility.FLAGS.embedding_dims], self.data_type)
question_c_hidden = tf.zeros(
[self.batch_size, self.utility.FLAGS.embedding_dims], self.data_type)
if (self.utility.FLAGS.rnn_dropout > 0.0):
if (self.mode == "train"):
rnn_dropout_mask = tf.cast(
tf.random_uniform(
tf.shape(question_hidden), minval=0.0, maxval=1.0) <
self.utility.FLAGS.rnn_dropout,
self.data_type) / self.utility.FLAGS.rnn_dropout
else:
rnn_dropout_mask = tf.ones_like(question_hidden)
for question_iterator in range(self.question_length):
curr_word = sentence[:, question_iterator]
question_vector = nn_utils.apply_dropout(
nn_utils.get_embedding(curr_word, self.utility, self.params),
self.utility.FLAGS.dropout, self.mode)
question_hidden, question_c_hidden = nn_utils.LSTMCell(
question_vector, question_hidden, question_c_hidden, lstm_params,
self.params)
if (self.utility.FLAGS.rnn_dropout > 0.0):
question_hidden = question_hidden * rnn_dropout_mask
hidden_vectors.append(tf.expand_dims(question_hidden, 0))
hidden_vectors = tf.concat(axis=0, values=hidden_vectors)
return question_hidden, hidden_vectors
def history_recurrent_step(self, curr_hprev, hprev):
#A single RNN step for controller or history RNN
return tf.tanh(
tf.matmul(
tf.concat(axis=1, values=[hprev, curr_hprev]), self.params[
"history_recurrent"])) + self.params["history_recurrent_bias"]
def question_number_softmax(self, hidden_vectors):
#Attention on quetsion to decide the question number to passed to comparison ops
def compute_ans(op_embedding, comparison):
op_embedding = tf.expand_dims(op_embedding, 0)
#dot product of operation embedding with hidden state to the left of the number occurrence
first = tf.transpose(
tf.matmul(op_embedding,
tf.transpose(
tf.reduce_sum(hidden_vectors * tf.tile(
tf.expand_dims(
tf.transpose(self.batch_ordinal_question), 2),
[1, 1, self.utility.FLAGS.embedding_dims]), 0))))
second = self.batch_question_number_one_mask + tf.transpose(
tf.matmul(op_embedding,
tf.transpose(
tf.reduce_sum(hidden_vectors * tf.tile(
tf.expand_dims(
tf.transpose(self.batch_ordinal_question_one), 2
), [1, 1, self.utility.FLAGS.embedding_dims]), 0))))
question_number_softmax = tf.nn.softmax(tf.concat(axis=1, values=[first, second]))
if (self.mode == "test"):
cond = tf.equal(question_number_softmax,
tf.reshape(
tf.reduce_max(question_number_softmax, 1),
[self.batch_size, 1]))
question_number_softmax = tf.where(
cond,
tf.fill(tf.shape(question_number_softmax), 1.0),
tf.fill(tf.shape(question_number_softmax), 0.0))
question_number_softmax = tf.cast(question_number_softmax,
self.data_type)
ans = tf.reshape(
tf.reduce_sum(question_number_softmax * tf.concat(
axis=1, values=[self.batch_question_number, self.batch_question_number_one]),
1), [self.batch_size, 1])
return ans
def compute_op_position(op_name):
for i in range(len(self.utility.operations_set)):
if (op_name == self.utility.operations_set[i]):
return i
def compute_question_number(op_name):
op_embedding = tf.nn.embedding_lookup(self.params_unit,
compute_op_position(op_name))
return compute_ans(op_embedding, op_name)
curr_greater_question_number = compute_question_number("greater")
curr_lesser_question_number = compute_question_number("lesser")
curr_geq_question_number = compute_question_number("geq")
curr_leq_question_number = compute_question_number("leq")
return curr_greater_question_number, curr_lesser_question_number, curr_geq_question_number, curr_leq_question_number
def perform_attention(self, context_vector, hidden_vectors, length, mask):
#Performs attention on hiddent_vectors using context vector
context_vector = tf.tile(
tf.expand_dims(context_vector, 0), [length, 1, 1]) #time * bs * d
attention_softmax = tf.nn.softmax(
tf.transpose(tf.reduce_sum(context_vector * hidden_vectors, 2)) +
mask) #batch_size * time
attention_softmax = tf.tile(
tf.expand_dims(tf.transpose(attention_softmax), 2),
[1, 1, self.embedding_dims])
ans_vector = tf.reduce_sum(attention_softmax * hidden_vectors, 0)
return ans_vector
#computes embeddings for column names using parameters of question module
def get_column_hidden_vectors(self):
#vector representations for the column names
self.column_hidden_vectors = tf.reduce_sum(
nn_utils.get_embedding(self.batch_number_column_names, self.utility,
self.params), 2)
self.word_column_hidden_vectors = tf.reduce_sum(
nn_utils.get_embedding(self.batch_word_column_names, self.utility,
self.params), 2)
def create_summary_embeddings(self):
#embeddings for each text entry in the table using parameters of the question module
self.summary_text_entry_embeddings = tf.reduce_sum(
tf.expand_dims(self.batch_exact_match, 3) * tf.expand_dims(
tf.expand_dims(
tf.expand_dims(
nn_utils.get_embedding(self.utility.entry_match_token_id,
self.utility, self.params), 0), 1),
2), 2)
def compute_column_softmax(self, column_controller_vector, time_step):
#compute softmax over all the columns using column controller vector
column_controller_vector = tf.tile(
tf.expand_dims(column_controller_vector, 1),
[1, self.num_cols + self.num_word_cols, 1]) #max_cols * bs * d
column_controller_vector = nn_utils.apply_dropout(
column_controller_vector, self.utility.FLAGS.dropout, self.mode)
self.full_column_hidden_vectors = tf.concat(
axis=1, values=[self.column_hidden_vectors, self.word_column_hidden_vectors])
self.full_column_hidden_vectors += self.summary_text_entry_embeddings
self.full_column_hidden_vectors = nn_utils.apply_dropout(
self.full_column_hidden_vectors, self.utility.FLAGS.dropout, self.mode)
column_logits = tf.reduce_sum(
column_controller_vector * self.full_column_hidden_vectors, 2) + (
self.params["word_match_feature_column_name"] *
self.batch_column_exact_match) + self.full_column_mask
column_softmax = tf.nn.softmax(column_logits) #batch_size * max_cols
return column_softmax
def compute_first_or_last(self, select, first=True):
#perform first ot last operation on row select with probabilistic row selection
answer = tf.zeros_like(select)
running_sum = tf.zeros([self.batch_size, 1], self.data_type)
for i in range(self.max_elements):
if (first):
current = tf.slice(select, [0, i], [self.batch_size, 1])
else:
current = tf.slice(select, [0, self.max_elements - 1 - i],
[self.batch_size, 1])
curr_prob = current * (1 - running_sum)
curr_prob = curr_prob * tf.cast(curr_prob >= 0.0, self.data_type)
running_sum += curr_prob
temp_ans = []
curr_prob = tf.expand_dims(tf.reshape(curr_prob, [self.batch_size]), 0)
for i_ans in range(self.max_elements):
if (not (first) and i_ans == self.max_elements - 1 - i):
temp_ans.append(curr_prob)
elif (first and i_ans == i):
temp_ans.append(curr_prob)
else:
temp_ans.append(tf.zeros_like(curr_prob))
temp_ans = tf.transpose(tf.concat(axis=0, values=temp_ans))
answer += temp_ans
return answer
def make_hard_softmax(self, softmax):
#converts soft selection to hard selection. used at test time
cond = tf.equal(
softmax, tf.reshape(tf.reduce_max(softmax, 1), [self.batch_size, 1]))
softmax = tf.where(
cond, tf.fill(tf.shape(softmax), 1.0), tf.fill(tf.shape(softmax), 0.0))
softmax = tf.cast(softmax, self.data_type)
return softmax
def compute_max_or_min(self, select, maxi=True):
#computes the argmax and argmin of a column with probabilistic row selection
answer = tf.zeros([
self.batch_size, self.num_cols + self.num_word_cols, self.max_elements
], self.data_type)
sum_prob = tf.zeros([self.batch_size, self.num_cols + self.num_word_cols],
self.data_type)
for j in range(self.max_elements):
if (maxi):
curr_pos = j
else:
curr_pos = self.max_elements - 1 - j
select_index = tf.slice(self.full_processed_sorted_index_column,
[0, 0, curr_pos], [self.batch_size, -1, 1])
select_mask = tf.equal(
tf.tile(
tf.expand_dims(
tf.tile(
tf.expand_dims(tf.range(self.max_elements), 0),
[self.batch_size, 1]), 1),
[1, self.num_cols + self.num_word_cols, 1]), select_index)
curr_prob = tf.expand_dims(select, 1) * tf.cast(
select_mask, self.data_type) * self.select_bad_number_mask
curr_prob = curr_prob * tf.expand_dims((1 - sum_prob), 2)
curr_prob = curr_prob * tf.expand_dims(
tf.cast((1 - sum_prob) > 0.0, self.data_type), 2)
answer = tf.where(select_mask, curr_prob, answer)
sum_prob += tf.reduce_sum(curr_prob, 2)
return answer
def perform_operations(self, softmax, full_column_softmax, select,
prev_select_1, curr_pass):
#performs all the 15 operations. computes scalar output, lookup answer and row selector
column_softmax = tf.slice(full_column_softmax, [0, 0],
[self.batch_size, self.num_cols])
word_column_softmax = tf.slice(full_column_softmax, [0, self.num_cols],
[self.batch_size, self.num_word_cols])
init_max = self.compute_max_or_min(select, maxi=True)
init_min = self.compute_max_or_min(select, maxi=False)
#operations that are column independent
count = tf.reshape(tf.reduce_sum(select, 1), [self.batch_size, 1])
select_full_column_softmax = tf.tile(
tf.expand_dims(full_column_softmax, 2),
[1, 1, self.max_elements
]) #BS * (max_cols + max_word_cols) * max_elements
select_word_column_softmax = tf.tile(
tf.expand_dims(word_column_softmax, 2),
[1, 1, self.max_elements]) #BS * max_word_cols * max_elements
select_greater = tf.reduce_sum(
self.init_select_greater * select_full_column_softmax,
1) * self.batch_question_number_mask #BS * max_elements
select_lesser = tf.reduce_sum(
self.init_select_lesser * select_full_column_softmax,
1) * self.batch_question_number_mask #BS * max_elements
select_geq = tf.reduce_sum(
self.init_select_geq * select_full_column_softmax,
1) * self.batch_question_number_mask #BS * max_elements
select_leq = tf.reduce_sum(
self.init_select_leq * select_full_column_softmax,
1) * self.batch_question_number_mask #BS * max_elements
select_max = tf.reduce_sum(init_max * select_full_column_softmax,
1) #BS * max_elements
select_min = tf.reduce_sum(init_min * select_full_column_softmax,
1) #BS * max_elements
select_prev = tf.concat(axis=1, values=[
tf.slice(select, [0, 1], [self.batch_size, self.max_elements - 1]),
tf.cast(tf.zeros([self.batch_size, 1]), self.data_type)
])
select_next = tf.concat(axis=1, values=[
tf.cast(tf.zeros([self.batch_size, 1]), self.data_type), tf.slice(
select, [0, 0], [self.batch_size, self.max_elements - 1])
])
select_last_rs = self.compute_first_or_last(select, False)
select_first_rs = self.compute_first_or_last(select, True)
select_word_match = tf.reduce_sum(self.batch_exact_match *
select_full_column_softmax, 1)
select_group_by_max = tf.reduce_sum(self.batch_group_by_max *
select_full_column_softmax, 1)
length_content = 1
length_select = 13
length_print = 1
values = tf.concat(axis=1, values=[count])
softmax_content = tf.slice(softmax, [0, 0],
[self.batch_size, length_content])
#compute scalar output
output = tf.reduce_sum(tf.multiply(softmax_content, values), 1)
#compute lookup answer
softmax_print = tf.slice(softmax, [0, length_content + length_select],
[self.batch_size, length_print])
curr_print = select_full_column_softmax * tf.tile(
tf.expand_dims(select, 1),
[1, self.num_cols + self.num_word_cols, 1
]) #BS * max_cols * max_elements (conisders only column)
self.batch_lookup_answer = curr_print * tf.tile(
tf.expand_dims(softmax_print, 2),
[1, self.num_cols + self.num_word_cols, self.max_elements
]) #BS * max_cols * max_elements
self.batch_lookup_answer = self.batch_lookup_answer * self.select_full_mask
#compute row select
softmax_select = tf.slice(softmax, [0, length_content],
[self.batch_size, length_select])
select_lists = [
tf.expand_dims(select_prev, 1), tf.expand_dims(select_next, 1),
tf.expand_dims(select_first_rs, 1), tf.expand_dims(select_last_rs, 1),
tf.expand_dims(select_group_by_max, 1),
tf.expand_dims(select_greater, 1), tf.expand_dims(select_lesser, 1),
tf.expand_dims(select_geq, 1), tf.expand_dims(select_leq, 1),
tf.expand_dims(select_max, 1), tf.expand_dims(select_min, 1),
tf.expand_dims(select_word_match, 1),
tf.expand_dims(self.reset_select, 1)
]
select = tf.reduce_sum(
tf.tile(tf.expand_dims(softmax_select, 2), [1, 1, self.max_elements]) *
tf.concat(axis=1, values=select_lists), 1)
select = select * self.select_whole_mask
return output, select
def one_pass(self, select, question_embedding, hidden_vectors, hprev,
prev_select_1, curr_pass):
#Performs one timestep which involves selecting an operation and a column
attention_vector = self.perform_attention(
hprev, hidden_vectors, self.question_length,
self.batch_question_attention_mask) #batch_size * embedding_dims
controller_vector = tf.nn.relu(
tf.matmul(hprev, self.params["controller_prev"]) + tf.matmul(
tf.concat(axis=1, values=[question_embedding, attention_vector]), self.params[
"controller"]))
column_controller_vector = tf.nn.relu(
tf.matmul(hprev, self.params["column_controller_prev"]) + tf.matmul(
tf.concat(axis=1, values=[question_embedding, attention_vector]), self.params[
"column_controller"]))
controller_vector = nn_utils.apply_dropout(
controller_vector, self.utility.FLAGS.dropout, self.mode)
self.operation_logits = tf.matmul(controller_vector,
tf.transpose(self.params_unit))
softmax = tf.nn.softmax(self.operation_logits)
soft_softmax = softmax
#compute column softmax: bs * max_columns
weighted_op_representation = tf.transpose(
tf.matmul(tf.transpose(self.params_unit), tf.transpose(softmax)))
column_controller_vector = tf.nn.relu(
tf.matmul(
tf.concat(axis=1, values=[
column_controller_vector, weighted_op_representation
]), self.params["break_conditional"]))
full_column_softmax = self.compute_column_softmax(column_controller_vector,
curr_pass)
soft_column_softmax = full_column_softmax
if (self.mode == "test"):
full_column_softmax = self.make_hard_softmax(full_column_softmax)
softmax = self.make_hard_softmax(softmax)
output, select = self.perform_operations(softmax, full_column_softmax,
select, prev_select_1, curr_pass)
return output, select, softmax, soft_softmax, full_column_softmax, soft_column_softmax
def compute_lookup_error(self, val):
#computes lookup error.
cond = tf.equal(self.batch_print_answer, val)
inter = tf.where(
cond, self.init_print_error,
tf.tile(
tf.reshape(tf.constant(1e10, self.data_type), [1, 1, 1]), [
self.batch_size, self.utility.FLAGS.max_word_cols +
self.utility.FLAGS.max_number_cols,
self.utility.FLAGS.max_elements
]))
return tf.reduce_min(tf.reduce_min(inter, 1), 1) * tf.cast(
tf.greater(
tf.reduce_sum(tf.reduce_sum(tf.cast(cond, self.data_type), 1), 1),
0.0), self.data_type)
def soft_min(self, x, y):
return tf.maximum(-1.0 * (1 / (
self.utility.FLAGS.soft_min_value + 0.0)) * tf.log(
tf.exp(-self.utility.FLAGS.soft_min_value * x) + tf.exp(
-self.utility.FLAGS.soft_min_value * y)), tf.zeros_like(x))
def error_computation(self):
#computes the error of each example in a batch
math_error = 0.5 * tf.square(tf.subtract(self.scalar_output, self.batch_answer))
#scale math error
math_error = math_error / self.rows
math_error = tf.minimum(math_error, self.utility.FLAGS.max_math_error *
tf.ones(tf.shape(math_error), self.data_type))
self.init_print_error = tf.where(
self.batch_gold_select, -1 * tf.log(self.batch_lookup_answer + 1e-300 +
self.invert_select_full_mask), -1 *
tf.log(1 - self.batch_lookup_answer)) * self.select_full_mask
print_error_1 = self.init_print_error * tf.cast(
tf.equal(self.batch_print_answer, 0.0), self.data_type)
print_error = tf.reduce_sum(tf.reduce_sum((print_error_1), 1), 1)
for val in range(1, 58):
print_error += self.compute_lookup_error(val + 0.0)
print_error = print_error * self.utility.FLAGS.print_cost / self.num_entries
if (self.mode == "train"):
error = tf.where(
tf.logical_and(
tf.not_equal(self.batch_answer, 0.0),
tf.not_equal(
tf.reduce_sum(tf.reduce_sum(self.batch_print_answer, 1), 1),
0.0)),
self.soft_min(math_error, print_error),
tf.where(
tf.not_equal(self.batch_answer, 0.0), math_error, print_error))
else:
error = tf.where(
tf.logical_and(
tf.equal(self.scalar_output, 0.0),
tf.equal(
tf.reduce_sum(tf.reduce_sum(self.batch_lookup_answer, 1), 1),
0.0)),
tf.ones_like(math_error),
tf.where(
tf.equal(self.scalar_output, 0.0), print_error, math_error))
return error
def batch_process(self):
#Computes loss and fraction of correct examples in a batch.
self.params_unit = nn_utils.apply_dropout(
self.params["unit"], self.utility.FLAGS.dropout, self.mode)
batch_size = self.batch_size
max_passes = self.max_passes
num_timesteps = 1
max_elements = self.max_elements
select = tf.cast(
tf.fill([self.batch_size, max_elements], 1.0), self.data_type)
hprev = tf.cast(
tf.fill([self.batch_size, self.embedding_dims], 0.0),
self.data_type) #running sum of the hidden states of the model
output = tf.cast(tf.fill([self.batch_size, 1], 0.0),
self.data_type) #output of the model
correct = tf.cast(
tf.fill([1], 0.0), self.data_type
) #to compute accuracy, returns number of correct examples for this batch
total_error = 0.0
prev_select_1 = tf.zeros_like(select)
self.create_summary_embeddings()
self.get_column_hidden_vectors()
#get question embedding
question_embedding, hidden_vectors = self.LSTM_question_embedding(
self.batch_question, self.question_length)
#compute arguments for comparison operation
greater_question_number, lesser_question_number, geq_question_number, leq_question_number = self.question_number_softmax(
hidden_vectors)
self.init_select_greater = tf.cast(
tf.greater(self.full_processed_column,
tf.expand_dims(greater_question_number, 2)), self.
data_type) * self.select_bad_number_mask #bs * max_cols * max_elements
self.init_select_lesser = tf.cast(
tf.less(self.full_processed_column,
tf.expand_dims(lesser_question_number, 2)), self.
data_type) * self.select_bad_number_mask #bs * max_cols * max_elements
self.init_select_geq = tf.cast(
tf.greater_equal(self.full_processed_column,
tf.expand_dims(geq_question_number, 2)), self.
data_type) * self.select_bad_number_mask #bs * max_cols * max_elements
self.init_select_leq = tf.cast(
tf.less_equal(self.full_processed_column,
tf.expand_dims(leq_question_number, 2)), self.
data_type) * self.select_bad_number_mask #bs * max_cols * max_elements
self.init_select_word_match = 0
if (self.utility.FLAGS.rnn_dropout > 0.0):
if (self.mode == "train"):
history_rnn_dropout_mask = tf.cast(
tf.random_uniform(
tf.shape(hprev), minval=0.0, maxval=1.0) <
self.utility.FLAGS.rnn_dropout,
self.data_type) / self.utility.FLAGS.rnn_dropout
else:
history_rnn_dropout_mask = tf.ones_like(hprev)
select = select * self.select_whole_mask
self.batch_log_prob = tf.zeros([self.batch_size], dtype=self.data_type)
#Perform max_passes and at each pass select operation and column
for curr_pass in range(max_passes):
print("step: ", curr_pass)
output, select, softmax, soft_softmax, column_softmax, soft_column_softmax = self.one_pass(
select, question_embedding, hidden_vectors, hprev, prev_select_1,
curr_pass)
prev_select_1 = select
#compute input to history RNN
input_op = tf.transpose(
tf.matmul(
tf.transpose(self.params_unit), tf.transpose(
soft_softmax))) #weighted average of emebdding of operations
input_col = tf.reduce_sum(
tf.expand_dims(soft_column_softmax, 2) *
self.full_column_hidden_vectors, 1)
history_input = tf.concat(axis=1, values=[input_op, input_col])
history_input = nn_utils.apply_dropout(
history_input, self.utility.FLAGS.dropout, self.mode)
hprev = self.history_recurrent_step(history_input, hprev)
if (self.utility.FLAGS.rnn_dropout > 0.0):
hprev = hprev * history_rnn_dropout_mask
self.scalar_output = output
error = self.error_computation()
cond = tf.less(error, 0.0001, name="cond")
correct_add = tf.where(
cond, tf.fill(tf.shape(cond), 1.0), tf.fill(tf.shape(cond), 0.0))
correct = tf.reduce_sum(correct_add)
error = error / batch_size
total_error = tf.reduce_sum(error)
total_correct = correct / batch_size
return total_error, total_correct
def compute_error(self):
#Sets mask variables and performs batch processing
self.batch_gold_select = self.batch_print_answer > 0.0
self.full_column_mask = tf.concat(
axis=1, values=[self.batch_number_column_mask, self.batch_word_column_mask])
self.full_processed_column = tf.concat(
axis=1,
values=[self.batch_processed_number_column, self.batch_processed_word_column])
self.full_processed_sorted_index_column = tf.concat(axis=1, values=[
self.batch_processed_sorted_index_number_column,
self.batch_processed_sorted_index_word_column
])
self.select_bad_number_mask = tf.cast(
tf.logical_and(
tf.not_equal(self.full_processed_column,
self.utility.FLAGS.pad_int),
tf.not_equal(self.full_processed_column,
self.utility.FLAGS.bad_number_pre_process)),
self.data_type)
self.select_mask = tf.cast(
tf.logical_not(
tf.equal(self.batch_number_column, self.utility.FLAGS.pad_int)),
self.data_type)
self.select_word_mask = tf.cast(
tf.logical_not(
tf.equal(self.batch_word_column_entry_mask,
self.utility.dummy_token_id)), self.data_type)
self.select_full_mask = tf.concat(
axis=1, values=[self.select_mask, self.select_word_mask])
self.select_whole_mask = tf.maximum(
tf.reshape(
tf.slice(self.select_mask, [0, 0, 0],
[self.batch_size, 1, self.max_elements]),
[self.batch_size, self.max_elements]),
tf.reshape(
tf.slice(self.select_word_mask, [0, 0, 0],
[self.batch_size, 1, self.max_elements]),
[self.batch_size, self.max_elements]))
self.invert_select_full_mask = tf.cast(
tf.concat(axis=1, values=[
tf.equal(self.batch_number_column, self.utility.FLAGS.pad_int),
tf.equal(self.batch_word_column_entry_mask,
self.utility.dummy_token_id)
]), self.data_type)
self.batch_lookup_answer = tf.zeros(tf.shape(self.batch_gold_select))
self.reset_select = self.select_whole_mask
self.rows = tf.reduce_sum(self.select_whole_mask, 1)
self.num_entries = tf.reshape(
tf.reduce_sum(tf.reduce_sum(self.select_full_mask, 1), 1),
[self.batch_size])
self.final_error, self.final_correct = self.batch_process()
return self.final_error
def create_graph(self, params, global_step):
#Creates the graph to compute error, gradient computation and updates parameters
self.params = params
batch_size = self.batch_size
learning_rate = tf.cast(self.utility.FLAGS.learning_rate, self.data_type)
self.total_cost = self.compute_error()
optimize_params = self.params.values()
optimize_names = self.params.keys()
print("optimize params ", optimize_names)
if (self.utility.FLAGS.l2_regularizer > 0.0):
reg_cost = 0.0
for ind_param in self.params.keys():
reg_cost += tf.nn.l2_loss(self.params[ind_param])
self.total_cost += self.utility.FLAGS.l2_regularizer * reg_cost
grads = tf.gradients(self.total_cost, optimize_params, name="gradients")
grad_norm = 0.0
for p, name in zip(grads, optimize_names):
print("grads: ", p, name)
if isinstance(p, tf.IndexedSlices):
grad_norm += tf.reduce_sum(p.values * p.values)
elif not (p == None):
grad_norm += tf.reduce_sum(p * p)
grad_norm = tf.sqrt(grad_norm)
max_grad_norm = np.float32(self.utility.FLAGS.clip_gradients).astype(
self.utility.np_data_type[self.utility.FLAGS.data_type])
grad_scale = tf.minimum(
tf.cast(1.0, self.data_type), max_grad_norm / grad_norm)
clipped_grads = list()
for p in grads:
if isinstance(p, tf.IndexedSlices):
tmp = p.values * grad_scale
clipped_grads.append(tf.IndexedSlices(tmp, p.indices))
elif not (p == None):
clipped_grads.append(p * grad_scale)
else:
clipped_grads.append(p)
grads = clipped_grads
self.global_step = global_step
params_list = self.params.values()
params_list.append(self.global_step)
adam = tf.train.AdamOptimizer(
learning_rate,
epsilon=tf.cast(self.utility.FLAGS.eps, self.data_type),
use_locking=True)
self.step = adam.apply_gradients(zip(grads, optimize_params),
global_step=self.global_step)
self.init_op = tf.global_variables_initializer()
|