File size: 33,249 Bytes
97b6013
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
# Copyright 2016 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Author: aneelakantan (Arvind Neelakantan)
"""

from __future__ import print_function

import numpy as np
import tensorflow as tf
import nn_utils


class Graph():

  def __init__(self, utility, batch_size, max_passes, mode="train"):
    self.utility = utility
    self.data_type = self.utility.tf_data_type[self.utility.FLAGS.data_type]
    self.max_elements = self.utility.FLAGS.max_elements
    max_elements = self.utility.FLAGS.max_elements
    self.num_cols = self.utility.FLAGS.max_number_cols
    self.num_word_cols = self.utility.FLAGS.max_word_cols
    self.question_length = self.utility.FLAGS.question_length
    self.batch_size = batch_size
    self.max_passes = max_passes
    self.mode = mode
    self.embedding_dims = self.utility.FLAGS.embedding_dims
    #input question and a mask
    self.batch_question = tf.placeholder(tf.int32,
                                         [batch_size, self.question_length])
    self.batch_question_attention_mask = tf.placeholder(
        self.data_type, [batch_size, self.question_length])
    #ground truth scalar answer and lookup answer
    self.batch_answer = tf.placeholder(self.data_type, [batch_size])
    self.batch_print_answer = tf.placeholder(
        self.data_type,
        [batch_size, self.num_cols + self.num_word_cols, max_elements])
    #number columns and its processed version
    self.batch_number_column = tf.placeholder(
        self.data_type, [batch_size, self.num_cols, max_elements
                        ])  #columns with numeric entries
    self.batch_processed_number_column = tf.placeholder(
        self.data_type, [batch_size, self.num_cols, max_elements])
    self.batch_processed_sorted_index_number_column = tf.placeholder(
        tf.int32, [batch_size, self.num_cols, max_elements])
    #word columns and its processed version
    self.batch_processed_word_column = tf.placeholder(
        self.data_type, [batch_size, self.num_word_cols, max_elements])
    self.batch_processed_sorted_index_word_column = tf.placeholder(
        tf.int32, [batch_size, self.num_word_cols, max_elements])
    self.batch_word_column_entry_mask = tf.placeholder(
        tf.int32, [batch_size, self.num_word_cols, max_elements])
    #names of word and number columns along with their mask
    self.batch_word_column_names = tf.placeholder(
        tf.int32,
        [batch_size, self.num_word_cols, self.utility.FLAGS.max_entry_length])
    self.batch_word_column_mask = tf.placeholder(
        self.data_type, [batch_size, self.num_word_cols])
    self.batch_number_column_names = tf.placeholder(
        tf.int32,
        [batch_size, self.num_cols, self.utility.FLAGS.max_entry_length])
    self.batch_number_column_mask = tf.placeholder(self.data_type,
                                                   [batch_size, self.num_cols])
    #exact match and group by max operation
    self.batch_exact_match = tf.placeholder(
        self.data_type,
        [batch_size, self.num_cols + self.num_word_cols, max_elements])
    self.batch_column_exact_match = tf.placeholder(
        self.data_type, [batch_size, self.num_cols + self.num_word_cols])
    self.batch_group_by_max = tf.placeholder(
        self.data_type,
        [batch_size, self.num_cols + self.num_word_cols, max_elements])
    #numbers in the question along with their position. This is used to compute arguments to the comparison operations
    self.batch_question_number = tf.placeholder(self.data_type, [batch_size, 1])
    self.batch_question_number_one = tf.placeholder(self.data_type,
                                                    [batch_size, 1])
    self.batch_question_number_mask = tf.placeholder(
        self.data_type, [batch_size, max_elements])
    self.batch_question_number_one_mask = tf.placeholder(self.data_type,
                                                         [batch_size, 1])
    self.batch_ordinal_question = tf.placeholder(
        self.data_type, [batch_size, self.question_length])
    self.batch_ordinal_question_one = tf.placeholder(
        self.data_type, [batch_size, self.question_length])

  def LSTM_question_embedding(self, sentence, sentence_length):
    #LSTM processes the input question
    lstm_params = "question_lstm"
    hidden_vectors = []
    sentence = self.batch_question
    question_hidden = tf.zeros(
        [self.batch_size, self.utility.FLAGS.embedding_dims], self.data_type)
    question_c_hidden = tf.zeros(
        [self.batch_size, self.utility.FLAGS.embedding_dims], self.data_type)
    if (self.utility.FLAGS.rnn_dropout > 0.0):
      if (self.mode == "train"):
        rnn_dropout_mask = tf.cast(
            tf.random_uniform(
                tf.shape(question_hidden), minval=0.0, maxval=1.0) <
            self.utility.FLAGS.rnn_dropout,
            self.data_type) / self.utility.FLAGS.rnn_dropout
      else:
        rnn_dropout_mask = tf.ones_like(question_hidden)
    for question_iterator in range(self.question_length):
      curr_word = sentence[:, question_iterator]
      question_vector = nn_utils.apply_dropout(
          nn_utils.get_embedding(curr_word, self.utility, self.params),
          self.utility.FLAGS.dropout, self.mode)
      question_hidden, question_c_hidden = nn_utils.LSTMCell(
          question_vector, question_hidden, question_c_hidden, lstm_params,
          self.params)
      if (self.utility.FLAGS.rnn_dropout > 0.0):
        question_hidden = question_hidden * rnn_dropout_mask
      hidden_vectors.append(tf.expand_dims(question_hidden, 0))
    hidden_vectors = tf.concat(axis=0, values=hidden_vectors)
    return question_hidden, hidden_vectors

  def history_recurrent_step(self, curr_hprev, hprev):
    #A single RNN step for controller or history RNN
    return tf.tanh(
        tf.matmul(
            tf.concat(axis=1, values=[hprev, curr_hprev]), self.params[
                "history_recurrent"])) + self.params["history_recurrent_bias"]

  def question_number_softmax(self, hidden_vectors):
    #Attention on quetsion to decide the question number to passed to comparison ops
    def compute_ans(op_embedding, comparison):
      op_embedding = tf.expand_dims(op_embedding, 0)
      #dot product of operation embedding with hidden state to the left of the number occurrence
      first = tf.transpose(
          tf.matmul(op_embedding,
                    tf.transpose(
                        tf.reduce_sum(hidden_vectors * tf.tile(
                            tf.expand_dims(
                                tf.transpose(self.batch_ordinal_question), 2),
                            [1, 1, self.utility.FLAGS.embedding_dims]), 0))))
      second = self.batch_question_number_one_mask + tf.transpose(
          tf.matmul(op_embedding,
                    tf.transpose(
                        tf.reduce_sum(hidden_vectors * tf.tile(
                            tf.expand_dims(
                                tf.transpose(self.batch_ordinal_question_one), 2
                            ), [1, 1, self.utility.FLAGS.embedding_dims]), 0))))
      question_number_softmax = tf.nn.softmax(tf.concat(axis=1, values=[first, second]))
      if (self.mode == "test"):
        cond = tf.equal(question_number_softmax,
                        tf.reshape(
                            tf.reduce_max(question_number_softmax, 1),
                            [self.batch_size, 1]))
        question_number_softmax = tf.where(
            cond,
            tf.fill(tf.shape(question_number_softmax), 1.0),
            tf.fill(tf.shape(question_number_softmax), 0.0))
        question_number_softmax = tf.cast(question_number_softmax,
                                          self.data_type)
      ans = tf.reshape(
          tf.reduce_sum(question_number_softmax * tf.concat(
              axis=1, values=[self.batch_question_number, self.batch_question_number_one]),
                        1), [self.batch_size, 1])
      return ans

    def compute_op_position(op_name):
      for i in range(len(self.utility.operations_set)):
        if (op_name == self.utility.operations_set[i]):
          return i

    def compute_question_number(op_name):
      op_embedding = tf.nn.embedding_lookup(self.params_unit,
                                            compute_op_position(op_name))
      return compute_ans(op_embedding, op_name)

    curr_greater_question_number = compute_question_number("greater")
    curr_lesser_question_number = compute_question_number("lesser")
    curr_geq_question_number = compute_question_number("geq")
    curr_leq_question_number = compute_question_number("leq")
    return curr_greater_question_number, curr_lesser_question_number, curr_geq_question_number, curr_leq_question_number

  def perform_attention(self, context_vector, hidden_vectors, length, mask):
    #Performs attention on hiddent_vectors using context vector
    context_vector = tf.tile(
        tf.expand_dims(context_vector, 0), [length, 1, 1])  #time * bs * d
    attention_softmax = tf.nn.softmax(
        tf.transpose(tf.reduce_sum(context_vector * hidden_vectors, 2)) +
        mask)  #batch_size * time
    attention_softmax = tf.tile(
        tf.expand_dims(tf.transpose(attention_softmax), 2),
        [1, 1, self.embedding_dims])
    ans_vector = tf.reduce_sum(attention_softmax * hidden_vectors, 0)
    return ans_vector

  #computes embeddings for column names using parameters of question module
  def get_column_hidden_vectors(self):
    #vector representations for the column names
    self.column_hidden_vectors = tf.reduce_sum(
        nn_utils.get_embedding(self.batch_number_column_names, self.utility,
                               self.params), 2)
    self.word_column_hidden_vectors = tf.reduce_sum(
        nn_utils.get_embedding(self.batch_word_column_names, self.utility,
                               self.params), 2)

  def create_summary_embeddings(self):
    #embeddings for each text entry in the table using parameters of the question module
    self.summary_text_entry_embeddings = tf.reduce_sum(
        tf.expand_dims(self.batch_exact_match, 3) * tf.expand_dims(
            tf.expand_dims(
                tf.expand_dims(
                    nn_utils.get_embedding(self.utility.entry_match_token_id,
                                           self.utility, self.params), 0), 1),
            2), 2)

  def compute_column_softmax(self, column_controller_vector, time_step):
    #compute softmax over all the columns using column controller vector
    column_controller_vector = tf.tile(
        tf.expand_dims(column_controller_vector, 1),
        [1, self.num_cols + self.num_word_cols, 1])  #max_cols * bs * d
    column_controller_vector = nn_utils.apply_dropout(
        column_controller_vector, self.utility.FLAGS.dropout, self.mode)
    self.full_column_hidden_vectors = tf.concat(
        axis=1, values=[self.column_hidden_vectors, self.word_column_hidden_vectors])
    self.full_column_hidden_vectors += self.summary_text_entry_embeddings
    self.full_column_hidden_vectors = nn_utils.apply_dropout(
        self.full_column_hidden_vectors, self.utility.FLAGS.dropout, self.mode)
    column_logits = tf.reduce_sum(
        column_controller_vector * self.full_column_hidden_vectors, 2) + (
            self.params["word_match_feature_column_name"] *
            self.batch_column_exact_match) + self.full_column_mask
    column_softmax = tf.nn.softmax(column_logits)  #batch_size * max_cols
    return column_softmax

  def compute_first_or_last(self, select, first=True):
    #perform first ot last operation on row select with probabilistic row selection
    answer = tf.zeros_like(select)
    running_sum = tf.zeros([self.batch_size, 1], self.data_type)
    for i in range(self.max_elements):
      if (first):
        current = tf.slice(select, [0, i], [self.batch_size, 1])
      else:
        current = tf.slice(select, [0, self.max_elements - 1 - i],
                           [self.batch_size, 1])
      curr_prob = current * (1 - running_sum)
      curr_prob = curr_prob * tf.cast(curr_prob >= 0.0, self.data_type)
      running_sum += curr_prob
      temp_ans = []
      curr_prob = tf.expand_dims(tf.reshape(curr_prob, [self.batch_size]), 0)
      for i_ans in range(self.max_elements):
        if (not (first) and i_ans == self.max_elements - 1 - i):
          temp_ans.append(curr_prob)
        elif (first and i_ans == i):
          temp_ans.append(curr_prob)
        else:
          temp_ans.append(tf.zeros_like(curr_prob))
      temp_ans = tf.transpose(tf.concat(axis=0, values=temp_ans))
      answer += temp_ans
    return answer

  def make_hard_softmax(self, softmax):
    #converts soft selection to hard selection. used at test time
    cond = tf.equal(
        softmax, tf.reshape(tf.reduce_max(softmax, 1), [self.batch_size, 1]))
    softmax = tf.where(
        cond, tf.fill(tf.shape(softmax), 1.0), tf.fill(tf.shape(softmax), 0.0))
    softmax = tf.cast(softmax, self.data_type)
    return softmax

  def compute_max_or_min(self, select, maxi=True):
    #computes the argmax and argmin of a column with probabilistic row selection
    answer = tf.zeros([
        self.batch_size, self.num_cols + self.num_word_cols, self.max_elements
    ], self.data_type)
    sum_prob = tf.zeros([self.batch_size, self.num_cols + self.num_word_cols],
                        self.data_type)
    for j in range(self.max_elements):
      if (maxi):
        curr_pos = j
      else:
        curr_pos = self.max_elements - 1 - j
      select_index = tf.slice(self.full_processed_sorted_index_column,
                              [0, 0, curr_pos], [self.batch_size, -1, 1])
      select_mask = tf.equal(
          tf.tile(
              tf.expand_dims(
                  tf.tile(
                      tf.expand_dims(tf.range(self.max_elements), 0),
                      [self.batch_size, 1]), 1),
              [1, self.num_cols + self.num_word_cols, 1]), select_index)
      curr_prob = tf.expand_dims(select, 1) * tf.cast(
          select_mask, self.data_type) * self.select_bad_number_mask
      curr_prob = curr_prob * tf.expand_dims((1 - sum_prob), 2)
      curr_prob = curr_prob * tf.expand_dims(
          tf.cast((1 - sum_prob) > 0.0, self.data_type), 2)
      answer = tf.where(select_mask, curr_prob, answer)
      sum_prob += tf.reduce_sum(curr_prob, 2)
    return answer

  def perform_operations(self, softmax, full_column_softmax, select,
                         prev_select_1, curr_pass):
    #performs all the 15 operations. computes scalar output, lookup answer and row selector
    column_softmax = tf.slice(full_column_softmax, [0, 0],
                              [self.batch_size, self.num_cols])
    word_column_softmax = tf.slice(full_column_softmax, [0, self.num_cols],
                                   [self.batch_size, self.num_word_cols])
    init_max = self.compute_max_or_min(select, maxi=True)
    init_min = self.compute_max_or_min(select, maxi=False)
    #operations that are column  independent
    count = tf.reshape(tf.reduce_sum(select, 1), [self.batch_size, 1])
    select_full_column_softmax = tf.tile(
        tf.expand_dims(full_column_softmax, 2),
        [1, 1, self.max_elements
        ])  #BS * (max_cols + max_word_cols) * max_elements
    select_word_column_softmax = tf.tile(
        tf.expand_dims(word_column_softmax, 2),
        [1, 1, self.max_elements])  #BS * max_word_cols * max_elements
    select_greater = tf.reduce_sum(
        self.init_select_greater * select_full_column_softmax,
        1) * self.batch_question_number_mask  #BS * max_elements
    select_lesser = tf.reduce_sum(
        self.init_select_lesser * select_full_column_softmax,
        1) * self.batch_question_number_mask  #BS * max_elements
    select_geq = tf.reduce_sum(
        self.init_select_geq * select_full_column_softmax,
        1) * self.batch_question_number_mask  #BS * max_elements
    select_leq = tf.reduce_sum(
        self.init_select_leq * select_full_column_softmax,
        1) * self.batch_question_number_mask  #BS * max_elements
    select_max = tf.reduce_sum(init_max * select_full_column_softmax,
                               1)  #BS * max_elements
    select_min = tf.reduce_sum(init_min * select_full_column_softmax,
                               1)  #BS * max_elements
    select_prev = tf.concat(axis=1, values=[
        tf.slice(select, [0, 1], [self.batch_size, self.max_elements - 1]),
        tf.cast(tf.zeros([self.batch_size, 1]), self.data_type)
    ])
    select_next = tf.concat(axis=1, values=[
        tf.cast(tf.zeros([self.batch_size, 1]), self.data_type), tf.slice(
            select, [0, 0], [self.batch_size, self.max_elements - 1])
    ])
    select_last_rs = self.compute_first_or_last(select, False)
    select_first_rs = self.compute_first_or_last(select, True)
    select_word_match = tf.reduce_sum(self.batch_exact_match *
                                      select_full_column_softmax, 1)
    select_group_by_max = tf.reduce_sum(self.batch_group_by_max *
                                        select_full_column_softmax, 1)
    length_content = 1
    length_select = 13
    length_print = 1
    values = tf.concat(axis=1, values=[count])
    softmax_content = tf.slice(softmax, [0, 0],
                               [self.batch_size, length_content])
    #compute scalar output
    output = tf.reduce_sum(tf.multiply(softmax_content, values), 1)
    #compute lookup answer
    softmax_print = tf.slice(softmax, [0, length_content + length_select],
                             [self.batch_size, length_print])
    curr_print = select_full_column_softmax * tf.tile(
        tf.expand_dims(select, 1),
        [1, self.num_cols + self.num_word_cols, 1
        ])  #BS * max_cols * max_elements (conisders only column)
    self.batch_lookup_answer = curr_print * tf.tile(
        tf.expand_dims(softmax_print, 2),
        [1, self.num_cols + self.num_word_cols, self.max_elements
        ])  #BS * max_cols * max_elements
    self.batch_lookup_answer = self.batch_lookup_answer * self.select_full_mask
    #compute row select
    softmax_select = tf.slice(softmax, [0, length_content],
                              [self.batch_size, length_select])
    select_lists = [
        tf.expand_dims(select_prev, 1), tf.expand_dims(select_next, 1),
        tf.expand_dims(select_first_rs, 1), tf.expand_dims(select_last_rs, 1),
        tf.expand_dims(select_group_by_max, 1),
        tf.expand_dims(select_greater, 1), tf.expand_dims(select_lesser, 1),
        tf.expand_dims(select_geq, 1), tf.expand_dims(select_leq, 1),
        tf.expand_dims(select_max, 1), tf.expand_dims(select_min, 1),
        tf.expand_dims(select_word_match, 1),
        tf.expand_dims(self.reset_select, 1)
    ]
    select = tf.reduce_sum(
        tf.tile(tf.expand_dims(softmax_select, 2), [1, 1, self.max_elements]) *
        tf.concat(axis=1, values=select_lists), 1)
    select = select * self.select_whole_mask
    return output, select

  def one_pass(self, select, question_embedding, hidden_vectors, hprev,
               prev_select_1, curr_pass):
    #Performs one timestep which involves selecting an operation and a column
    attention_vector = self.perform_attention(
        hprev, hidden_vectors, self.question_length,
        self.batch_question_attention_mask)  #batch_size * embedding_dims
    controller_vector = tf.nn.relu(
        tf.matmul(hprev, self.params["controller_prev"]) + tf.matmul(
            tf.concat(axis=1, values=[question_embedding, attention_vector]), self.params[
                "controller"]))
    column_controller_vector = tf.nn.relu(
        tf.matmul(hprev, self.params["column_controller_prev"]) + tf.matmul(
            tf.concat(axis=1, values=[question_embedding, attention_vector]), self.params[
                "column_controller"]))
    controller_vector = nn_utils.apply_dropout(
        controller_vector, self.utility.FLAGS.dropout, self.mode)
    self.operation_logits = tf.matmul(controller_vector,
                                      tf.transpose(self.params_unit))
    softmax = tf.nn.softmax(self.operation_logits)
    soft_softmax = softmax
    #compute column softmax: bs * max_columns
    weighted_op_representation = tf.transpose(
        tf.matmul(tf.transpose(self.params_unit), tf.transpose(softmax)))
    column_controller_vector = tf.nn.relu(
        tf.matmul(
            tf.concat(axis=1, values=[
                column_controller_vector, weighted_op_representation
            ]), self.params["break_conditional"]))
    full_column_softmax = self.compute_column_softmax(column_controller_vector,
                                                      curr_pass)
    soft_column_softmax = full_column_softmax
    if (self.mode == "test"):
      full_column_softmax = self.make_hard_softmax(full_column_softmax)
      softmax = self.make_hard_softmax(softmax)
    output, select = self.perform_operations(softmax, full_column_softmax,
                                             select, prev_select_1, curr_pass)
    return output, select, softmax, soft_softmax, full_column_softmax, soft_column_softmax

  def compute_lookup_error(self, val):
    #computes lookup error.
    cond = tf.equal(self.batch_print_answer, val)
    inter = tf.where(
        cond, self.init_print_error,
        tf.tile(
            tf.reshape(tf.constant(1e10, self.data_type), [1, 1, 1]), [
                self.batch_size, self.utility.FLAGS.max_word_cols +
                self.utility.FLAGS.max_number_cols,
                self.utility.FLAGS.max_elements
            ]))
    return tf.reduce_min(tf.reduce_min(inter, 1), 1) * tf.cast(
        tf.greater(
            tf.reduce_sum(tf.reduce_sum(tf.cast(cond, self.data_type), 1), 1),
            0.0), self.data_type)

  def soft_min(self, x, y):
    return tf.maximum(-1.0 * (1 / (
        self.utility.FLAGS.soft_min_value + 0.0)) * tf.log(
            tf.exp(-self.utility.FLAGS.soft_min_value * x) + tf.exp(
                -self.utility.FLAGS.soft_min_value * y)), tf.zeros_like(x))

  def error_computation(self):
    #computes the error of each example in a batch
    math_error = 0.5 * tf.square(tf.subtract(self.scalar_output, self.batch_answer))
    #scale math error
    math_error = math_error / self.rows
    math_error = tf.minimum(math_error, self.utility.FLAGS.max_math_error *
                            tf.ones(tf.shape(math_error), self.data_type))
    self.init_print_error = tf.where(
        self.batch_gold_select, -1 * tf.log(self.batch_lookup_answer + 1e-300 +
                                            self.invert_select_full_mask), -1 *
        tf.log(1 - self.batch_lookup_answer)) * self.select_full_mask
    print_error_1 = self.init_print_error * tf.cast(
        tf.equal(self.batch_print_answer, 0.0), self.data_type)
    print_error = tf.reduce_sum(tf.reduce_sum((print_error_1), 1), 1)
    for val in range(1, 58):
      print_error += self.compute_lookup_error(val + 0.0)
    print_error = print_error * self.utility.FLAGS.print_cost / self.num_entries
    if (self.mode == "train"):
      error = tf.where(
          tf.logical_and(
              tf.not_equal(self.batch_answer, 0.0),
              tf.not_equal(
                  tf.reduce_sum(tf.reduce_sum(self.batch_print_answer, 1), 1),
                  0.0)),
          self.soft_min(math_error, print_error),
          tf.where(
              tf.not_equal(self.batch_answer, 0.0), math_error, print_error))
    else:
      error = tf.where(
          tf.logical_and(
              tf.equal(self.scalar_output, 0.0),
              tf.equal(
                  tf.reduce_sum(tf.reduce_sum(self.batch_lookup_answer, 1), 1),
                  0.0)),
          tf.ones_like(math_error),
          tf.where(
              tf.equal(self.scalar_output, 0.0), print_error, math_error))
    return error

  def batch_process(self):
    #Computes loss and fraction of correct examples in a batch.
    self.params_unit = nn_utils.apply_dropout(
        self.params["unit"], self.utility.FLAGS.dropout, self.mode)
    batch_size = self.batch_size
    max_passes = self.max_passes
    num_timesteps = 1
    max_elements = self.max_elements
    select = tf.cast(
        tf.fill([self.batch_size, max_elements], 1.0), self.data_type)
    hprev = tf.cast(
        tf.fill([self.batch_size, self.embedding_dims], 0.0),
        self.data_type)  #running sum of the hidden states of the model
    output = tf.cast(tf.fill([self.batch_size, 1], 0.0),
                     self.data_type)  #output of the model
    correct = tf.cast(
        tf.fill([1], 0.0), self.data_type
    )  #to compute accuracy, returns number of correct examples for this batch
    total_error = 0.0
    prev_select_1 = tf.zeros_like(select)
    self.create_summary_embeddings()
    self.get_column_hidden_vectors()
    #get question embedding
    question_embedding, hidden_vectors = self.LSTM_question_embedding(
        self.batch_question, self.question_length)
    #compute arguments for comparison operation
    greater_question_number, lesser_question_number, geq_question_number, leq_question_number = self.question_number_softmax(
        hidden_vectors)
    self.init_select_greater = tf.cast(
        tf.greater(self.full_processed_column,
                   tf.expand_dims(greater_question_number, 2)), self.
        data_type) * self.select_bad_number_mask  #bs * max_cols * max_elements
    self.init_select_lesser = tf.cast(
        tf.less(self.full_processed_column,
                tf.expand_dims(lesser_question_number, 2)), self.
        data_type) * self.select_bad_number_mask  #bs * max_cols * max_elements
    self.init_select_geq = tf.cast(
        tf.greater_equal(self.full_processed_column,
                         tf.expand_dims(geq_question_number, 2)), self.
        data_type) * self.select_bad_number_mask  #bs * max_cols * max_elements
    self.init_select_leq = tf.cast(
        tf.less_equal(self.full_processed_column,
                      tf.expand_dims(leq_question_number, 2)), self.
        data_type) * self.select_bad_number_mask  #bs * max_cols * max_elements
    self.init_select_word_match = 0
    if (self.utility.FLAGS.rnn_dropout > 0.0):
      if (self.mode == "train"):
        history_rnn_dropout_mask = tf.cast(
            tf.random_uniform(
                tf.shape(hprev), minval=0.0, maxval=1.0) <
            self.utility.FLAGS.rnn_dropout,
            self.data_type) / self.utility.FLAGS.rnn_dropout
      else:
        history_rnn_dropout_mask = tf.ones_like(hprev)
    select = select * self.select_whole_mask
    self.batch_log_prob = tf.zeros([self.batch_size], dtype=self.data_type)
    #Perform max_passes and at each  pass select operation and column
    for curr_pass in range(max_passes):
      print("step: ", curr_pass)
      output, select, softmax, soft_softmax, column_softmax, soft_column_softmax = self.one_pass(
          select, question_embedding, hidden_vectors, hprev, prev_select_1,
          curr_pass)
      prev_select_1 = select
      #compute input to history RNN
      input_op = tf.transpose(
          tf.matmul(
              tf.transpose(self.params_unit), tf.transpose(
                  soft_softmax)))  #weighted average of emebdding of operations
      input_col = tf.reduce_sum(
          tf.expand_dims(soft_column_softmax, 2) *
          self.full_column_hidden_vectors, 1)
      history_input = tf.concat(axis=1, values=[input_op, input_col])
      history_input = nn_utils.apply_dropout(
          history_input, self.utility.FLAGS.dropout, self.mode)
      hprev = self.history_recurrent_step(history_input, hprev)
      if (self.utility.FLAGS.rnn_dropout > 0.0):
        hprev = hprev * history_rnn_dropout_mask
    self.scalar_output = output
    error = self.error_computation()
    cond = tf.less(error, 0.0001, name="cond")
    correct_add = tf.where(
        cond, tf.fill(tf.shape(cond), 1.0), tf.fill(tf.shape(cond), 0.0))
    correct = tf.reduce_sum(correct_add)
    error = error / batch_size
    total_error = tf.reduce_sum(error)
    total_correct = correct / batch_size
    return total_error, total_correct

  def compute_error(self):
    #Sets mask variables and performs batch processing
    self.batch_gold_select = self.batch_print_answer > 0.0
    self.full_column_mask = tf.concat(
        axis=1, values=[self.batch_number_column_mask, self.batch_word_column_mask])
    self.full_processed_column = tf.concat(
        axis=1,
        values=[self.batch_processed_number_column, self.batch_processed_word_column])
    self.full_processed_sorted_index_column = tf.concat(axis=1, values=[
        self.batch_processed_sorted_index_number_column,
        self.batch_processed_sorted_index_word_column
    ])
    self.select_bad_number_mask = tf.cast(
        tf.logical_and(
            tf.not_equal(self.full_processed_column,
                         self.utility.FLAGS.pad_int),
            tf.not_equal(self.full_processed_column,
                         self.utility.FLAGS.bad_number_pre_process)),
        self.data_type)
    self.select_mask = tf.cast(
        tf.logical_not(
            tf.equal(self.batch_number_column, self.utility.FLAGS.pad_int)),
        self.data_type)
    self.select_word_mask = tf.cast(
        tf.logical_not(
            tf.equal(self.batch_word_column_entry_mask,
                     self.utility.dummy_token_id)), self.data_type)
    self.select_full_mask = tf.concat(
        axis=1, values=[self.select_mask, self.select_word_mask])
    self.select_whole_mask = tf.maximum(
        tf.reshape(
            tf.slice(self.select_mask, [0, 0, 0],
                     [self.batch_size, 1, self.max_elements]),
            [self.batch_size, self.max_elements]),
        tf.reshape(
            tf.slice(self.select_word_mask, [0, 0, 0],
                     [self.batch_size, 1, self.max_elements]),
            [self.batch_size, self.max_elements]))
    self.invert_select_full_mask = tf.cast(
        tf.concat(axis=1, values=[
            tf.equal(self.batch_number_column, self.utility.FLAGS.pad_int),
            tf.equal(self.batch_word_column_entry_mask,
                     self.utility.dummy_token_id)
        ]), self.data_type)
    self.batch_lookup_answer = tf.zeros(tf.shape(self.batch_gold_select))
    self.reset_select = self.select_whole_mask
    self.rows = tf.reduce_sum(self.select_whole_mask, 1)
    self.num_entries = tf.reshape(
        tf.reduce_sum(tf.reduce_sum(self.select_full_mask, 1), 1),
        [self.batch_size])
    self.final_error, self.final_correct = self.batch_process()
    return self.final_error

  def create_graph(self, params, global_step):
    #Creates the graph to compute error, gradient computation and updates parameters
    self.params = params
    batch_size = self.batch_size
    learning_rate = tf.cast(self.utility.FLAGS.learning_rate, self.data_type)
    self.total_cost = self.compute_error()
    optimize_params = self.params.values()
    optimize_names = self.params.keys()
    print("optimize params ", optimize_names)
    if (self.utility.FLAGS.l2_regularizer > 0.0):
      reg_cost = 0.0
      for ind_param in self.params.keys():
        reg_cost += tf.nn.l2_loss(self.params[ind_param])
      self.total_cost += self.utility.FLAGS.l2_regularizer * reg_cost
    grads = tf.gradients(self.total_cost, optimize_params, name="gradients")
    grad_norm = 0.0
    for p, name in zip(grads, optimize_names):
      print("grads: ", p, name)
      if isinstance(p, tf.IndexedSlices):
        grad_norm += tf.reduce_sum(p.values * p.values)
      elif not (p == None):
        grad_norm += tf.reduce_sum(p * p)
    grad_norm = tf.sqrt(grad_norm)
    max_grad_norm = np.float32(self.utility.FLAGS.clip_gradients).astype(
        self.utility.np_data_type[self.utility.FLAGS.data_type])
    grad_scale = tf.minimum(
        tf.cast(1.0, self.data_type), max_grad_norm / grad_norm)
    clipped_grads = list()
    for p in grads:
      if isinstance(p, tf.IndexedSlices):
        tmp = p.values * grad_scale
        clipped_grads.append(tf.IndexedSlices(tmp, p.indices))
      elif not (p == None):
        clipped_grads.append(p * grad_scale)
      else:
        clipped_grads.append(p)
    grads = clipped_grads
    self.global_step = global_step
    params_list = self.params.values()
    params_list.append(self.global_step)
    adam = tf.train.AdamOptimizer(
        learning_rate,
        epsilon=tf.cast(self.utility.FLAGS.eps, self.data_type),
        use_locking=True)
    self.step = adam.apply_gradients(zip(grads, optimize_params),
					global_step=self.global_step)
    self.init_op = tf.global_variables_initializer()