File size: 41,816 Bytes
97b6013 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 |
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""A function to build a DetectionModel from configuration."""
import functools
from object_detection.builders import anchor_generator_builder
from object_detection.builders import box_coder_builder
from object_detection.builders import box_predictor_builder
from object_detection.builders import hyperparams_builder
from object_detection.builders import image_resizer_builder
from object_detection.builders import losses_builder
from object_detection.builders import matcher_builder
from object_detection.builders import post_processing_builder
from object_detection.builders import region_similarity_calculator_builder as sim_calc
from object_detection.core import balanced_positive_negative_sampler as sampler
from object_detection.core import post_processing
from object_detection.core import target_assigner
from object_detection.meta_architectures import center_net_meta_arch
from object_detection.meta_architectures import context_rcnn_meta_arch
from object_detection.meta_architectures import faster_rcnn_meta_arch
from object_detection.meta_architectures import rfcn_meta_arch
from object_detection.meta_architectures import ssd_meta_arch
from object_detection.predictors.heads import mask_head
from object_detection.protos import losses_pb2
from object_detection.protos import model_pb2
from object_detection.utils import label_map_util
from object_detection.utils import ops
from object_detection.utils import tf_version
## Feature Extractors for TF
## This section conditionally imports different feature extractors based on the
## Tensorflow version.
##
# pylint: disable=g-import-not-at-top
if tf_version.is_tf2():
from object_detection.models import center_net_hourglass_feature_extractor
from object_detection.models import center_net_resnet_feature_extractor
from object_detection.models import center_net_resnet_v1_fpn_feature_extractor
from object_detection.models import faster_rcnn_inception_resnet_v2_keras_feature_extractor as frcnn_inc_res_keras
from object_detection.models import faster_rcnn_resnet_keras_feature_extractor as frcnn_resnet_keras
from object_detection.models import ssd_resnet_v1_fpn_keras_feature_extractor as ssd_resnet_v1_fpn_keras
from object_detection.models.ssd_mobilenet_v1_fpn_keras_feature_extractor import SSDMobileNetV1FpnKerasFeatureExtractor
from object_detection.models.ssd_mobilenet_v1_keras_feature_extractor import SSDMobileNetV1KerasFeatureExtractor
from object_detection.models.ssd_mobilenet_v2_fpn_keras_feature_extractor import SSDMobileNetV2FpnKerasFeatureExtractor
from object_detection.models.ssd_mobilenet_v2_keras_feature_extractor import SSDMobileNetV2KerasFeatureExtractor
from object_detection.predictors import rfcn_keras_box_predictor
if tf_version.is_tf1():
from object_detection.models import faster_rcnn_inception_resnet_v2_feature_extractor as frcnn_inc_res
from object_detection.models import faster_rcnn_inception_v2_feature_extractor as frcnn_inc_v2
from object_detection.models import faster_rcnn_nas_feature_extractor as frcnn_nas
from object_detection.models import faster_rcnn_pnas_feature_extractor as frcnn_pnas
from object_detection.models import faster_rcnn_resnet_v1_feature_extractor as frcnn_resnet_v1
from object_detection.models import ssd_resnet_v1_fpn_feature_extractor as ssd_resnet_v1_fpn
from object_detection.models import ssd_resnet_v1_ppn_feature_extractor as ssd_resnet_v1_ppn
from object_detection.models.embedded_ssd_mobilenet_v1_feature_extractor import EmbeddedSSDMobileNetV1FeatureExtractor
from object_detection.models.ssd_inception_v2_feature_extractor import SSDInceptionV2FeatureExtractor
from object_detection.models.ssd_mobilenet_v2_fpn_feature_extractor import SSDMobileNetV2FpnFeatureExtractor
from object_detection.models.ssd_mobilenet_v2_mnasfpn_feature_extractor import SSDMobileNetV2MnasFPNFeatureExtractor
from object_detection.models.ssd_inception_v3_feature_extractor import SSDInceptionV3FeatureExtractor
from object_detection.models.ssd_mobilenet_edgetpu_feature_extractor import SSDMobileNetEdgeTPUFeatureExtractor
from object_detection.models.ssd_mobilenet_v1_feature_extractor import SSDMobileNetV1FeatureExtractor
from object_detection.models.ssd_mobilenet_v1_fpn_feature_extractor import SSDMobileNetV1FpnFeatureExtractor
from object_detection.models.ssd_mobilenet_v1_ppn_feature_extractor import SSDMobileNetV1PpnFeatureExtractor
from object_detection.models.ssd_mobilenet_v2_feature_extractor import SSDMobileNetV2FeatureExtractor
from object_detection.models.ssd_mobilenet_v3_feature_extractor import SSDMobileNetV3LargeFeatureExtractor
from object_detection.models.ssd_mobilenet_v3_feature_extractor import SSDMobileNetV3SmallFeatureExtractor
from object_detection.models.ssd_mobiledet_feature_extractor import SSDMobileDetCPUFeatureExtractor
from object_detection.models.ssd_mobiledet_feature_extractor import SSDMobileDetDSPFeatureExtractor
from object_detection.models.ssd_mobiledet_feature_extractor import SSDMobileDetEdgeTPUFeatureExtractor
from object_detection.models.ssd_mobiledet_feature_extractor import SSDMobileDetGPUFeatureExtractor
from object_detection.models.ssd_pnasnet_feature_extractor import SSDPNASNetFeatureExtractor
from object_detection.predictors import rfcn_box_predictor
# pylint: enable=g-import-not-at-top
if tf_version.is_tf2():
SSD_KERAS_FEATURE_EXTRACTOR_CLASS_MAP = {
'ssd_mobilenet_v1_keras': SSDMobileNetV1KerasFeatureExtractor,
'ssd_mobilenet_v1_fpn_keras': SSDMobileNetV1FpnKerasFeatureExtractor,
'ssd_mobilenet_v2_keras': SSDMobileNetV2KerasFeatureExtractor,
'ssd_mobilenet_v2_fpn_keras': SSDMobileNetV2FpnKerasFeatureExtractor,
'ssd_resnet50_v1_fpn_keras':
ssd_resnet_v1_fpn_keras.SSDResNet50V1FpnKerasFeatureExtractor,
'ssd_resnet101_v1_fpn_keras':
ssd_resnet_v1_fpn_keras.SSDResNet101V1FpnKerasFeatureExtractor,
'ssd_resnet152_v1_fpn_keras':
ssd_resnet_v1_fpn_keras.SSDResNet152V1FpnKerasFeatureExtractor,
}
FASTER_RCNN_KERAS_FEATURE_EXTRACTOR_CLASS_MAP = {
'faster_rcnn_resnet50_keras':
frcnn_resnet_keras.FasterRCNNResnet50KerasFeatureExtractor,
'faster_rcnn_resnet101_keras':
frcnn_resnet_keras.FasterRCNNResnet101KerasFeatureExtractor,
'faster_rcnn_resnet152_keras':
frcnn_resnet_keras.FasterRCNNResnet152KerasFeatureExtractor,
'faster_rcnn_inception_resnet_v2_keras':
frcnn_inc_res_keras.FasterRCNNInceptionResnetV2KerasFeatureExtractor,
}
CENTER_NET_EXTRACTOR_FUNCTION_MAP = {
'resnet_v2_50': center_net_resnet_feature_extractor.resnet_v2_50,
'resnet_v2_101': center_net_resnet_feature_extractor.resnet_v2_101,
'resnet_v1_50_fpn':
center_net_resnet_v1_fpn_feature_extractor.resnet_v1_50_fpn,
'resnet_v1_101_fpn':
center_net_resnet_v1_fpn_feature_extractor.resnet_v1_101_fpn,
'hourglass_104': center_net_hourglass_feature_extractor.hourglass_104,
}
FEATURE_EXTRACTOR_MAPS = [
CENTER_NET_EXTRACTOR_FUNCTION_MAP,
FASTER_RCNN_KERAS_FEATURE_EXTRACTOR_CLASS_MAP,
SSD_KERAS_FEATURE_EXTRACTOR_CLASS_MAP
]
if tf_version.is_tf1():
SSD_FEATURE_EXTRACTOR_CLASS_MAP = {
'ssd_inception_v2':
SSDInceptionV2FeatureExtractor,
'ssd_inception_v3':
SSDInceptionV3FeatureExtractor,
'ssd_mobilenet_v1':
SSDMobileNetV1FeatureExtractor,
'ssd_mobilenet_v1_fpn':
SSDMobileNetV1FpnFeatureExtractor,
'ssd_mobilenet_v1_ppn':
SSDMobileNetV1PpnFeatureExtractor,
'ssd_mobilenet_v2':
SSDMobileNetV2FeatureExtractor,
'ssd_mobilenet_v2_fpn':
SSDMobileNetV2FpnFeatureExtractor,
'ssd_mobilenet_v2_mnasfpn':
SSDMobileNetV2MnasFPNFeatureExtractor,
'ssd_mobilenet_v3_large':
SSDMobileNetV3LargeFeatureExtractor,
'ssd_mobilenet_v3_small':
SSDMobileNetV3SmallFeatureExtractor,
'ssd_mobilenet_edgetpu':
SSDMobileNetEdgeTPUFeatureExtractor,
'ssd_resnet50_v1_fpn':
ssd_resnet_v1_fpn.SSDResnet50V1FpnFeatureExtractor,
'ssd_resnet101_v1_fpn':
ssd_resnet_v1_fpn.SSDResnet101V1FpnFeatureExtractor,
'ssd_resnet152_v1_fpn':
ssd_resnet_v1_fpn.SSDResnet152V1FpnFeatureExtractor,
'ssd_resnet50_v1_ppn':
ssd_resnet_v1_ppn.SSDResnet50V1PpnFeatureExtractor,
'ssd_resnet101_v1_ppn':
ssd_resnet_v1_ppn.SSDResnet101V1PpnFeatureExtractor,
'ssd_resnet152_v1_ppn':
ssd_resnet_v1_ppn.SSDResnet152V1PpnFeatureExtractor,
'embedded_ssd_mobilenet_v1':
EmbeddedSSDMobileNetV1FeatureExtractor,
'ssd_pnasnet':
SSDPNASNetFeatureExtractor,
'ssd_mobiledet_cpu':
SSDMobileDetCPUFeatureExtractor,
'ssd_mobiledet_dsp':
SSDMobileDetDSPFeatureExtractor,
'ssd_mobiledet_edgetpu':
SSDMobileDetEdgeTPUFeatureExtractor,
'ssd_mobiledet_gpu':
SSDMobileDetGPUFeatureExtractor,
}
FASTER_RCNN_FEATURE_EXTRACTOR_CLASS_MAP = {
'faster_rcnn_nas':
frcnn_nas.FasterRCNNNASFeatureExtractor,
'faster_rcnn_pnas':
frcnn_pnas.FasterRCNNPNASFeatureExtractor,
'faster_rcnn_inception_resnet_v2':
frcnn_inc_res.FasterRCNNInceptionResnetV2FeatureExtractor,
'faster_rcnn_inception_v2':
frcnn_inc_v2.FasterRCNNInceptionV2FeatureExtractor,
'faster_rcnn_resnet50':
frcnn_resnet_v1.FasterRCNNResnet50FeatureExtractor,
'faster_rcnn_resnet101':
frcnn_resnet_v1.FasterRCNNResnet101FeatureExtractor,
'faster_rcnn_resnet152':
frcnn_resnet_v1.FasterRCNNResnet152FeatureExtractor,
}
FEATURE_EXTRACTOR_MAPS = [
SSD_FEATURE_EXTRACTOR_CLASS_MAP,
FASTER_RCNN_FEATURE_EXTRACTOR_CLASS_MAP
]
def _check_feature_extractor_exists(feature_extractor_type):
feature_extractors = set().union(*FEATURE_EXTRACTOR_MAPS)
if feature_extractor_type not in feature_extractors:
raise ValueError('{} is not supported. See `model_builder.py` for features '
'extractors compatible with different versions of '
'Tensorflow'.format(feature_extractor_type))
def _build_ssd_feature_extractor(feature_extractor_config,
is_training,
freeze_batchnorm,
reuse_weights=None):
"""Builds a ssd_meta_arch.SSDFeatureExtractor based on config.
Args:
feature_extractor_config: A SSDFeatureExtractor proto config from ssd.proto.
is_training: True if this feature extractor is being built for training.
freeze_batchnorm: Whether to freeze batch norm parameters during
training or not. When training with a small batch size (e.g. 1), it is
desirable to freeze batch norm update and use pretrained batch norm
params.
reuse_weights: if the feature extractor should reuse weights.
Returns:
ssd_meta_arch.SSDFeatureExtractor based on config.
Raises:
ValueError: On invalid feature extractor type.
"""
feature_type = feature_extractor_config.type
depth_multiplier = feature_extractor_config.depth_multiplier
min_depth = feature_extractor_config.min_depth
pad_to_multiple = feature_extractor_config.pad_to_multiple
use_explicit_padding = feature_extractor_config.use_explicit_padding
use_depthwise = feature_extractor_config.use_depthwise
is_keras = tf_version.is_tf2()
if is_keras:
conv_hyperparams = hyperparams_builder.KerasLayerHyperparams(
feature_extractor_config.conv_hyperparams)
else:
conv_hyperparams = hyperparams_builder.build(
feature_extractor_config.conv_hyperparams, is_training)
override_base_feature_extractor_hyperparams = (
feature_extractor_config.override_base_feature_extractor_hyperparams)
if not is_keras and feature_type not in SSD_FEATURE_EXTRACTOR_CLASS_MAP:
raise ValueError('Unknown ssd feature_extractor: {}'.format(feature_type))
if is_keras:
feature_extractor_class = SSD_KERAS_FEATURE_EXTRACTOR_CLASS_MAP[
feature_type]
else:
feature_extractor_class = SSD_FEATURE_EXTRACTOR_CLASS_MAP[feature_type]
kwargs = {
'is_training':
is_training,
'depth_multiplier':
depth_multiplier,
'min_depth':
min_depth,
'pad_to_multiple':
pad_to_multiple,
'use_explicit_padding':
use_explicit_padding,
'use_depthwise':
use_depthwise,
'override_base_feature_extractor_hyperparams':
override_base_feature_extractor_hyperparams
}
if feature_extractor_config.HasField('replace_preprocessor_with_placeholder'):
kwargs.update({
'replace_preprocessor_with_placeholder':
feature_extractor_config.replace_preprocessor_with_placeholder
})
if feature_extractor_config.HasField('num_layers'):
kwargs.update({'num_layers': feature_extractor_config.num_layers})
if is_keras:
kwargs.update({
'conv_hyperparams': conv_hyperparams,
'inplace_batchnorm_update': False,
'freeze_batchnorm': freeze_batchnorm
})
else:
kwargs.update({
'conv_hyperparams_fn': conv_hyperparams,
'reuse_weights': reuse_weights,
})
if feature_extractor_config.HasField('fpn'):
kwargs.update({
'fpn_min_level':
feature_extractor_config.fpn.min_level,
'fpn_max_level':
feature_extractor_config.fpn.max_level,
'additional_layer_depth':
feature_extractor_config.fpn.additional_layer_depth,
})
return feature_extractor_class(**kwargs)
def _build_ssd_model(ssd_config, is_training, add_summaries):
"""Builds an SSD detection model based on the model config.
Args:
ssd_config: A ssd.proto object containing the config for the desired
SSDMetaArch.
is_training: True if this model is being built for training purposes.
add_summaries: Whether to add tf summaries in the model.
Returns:
SSDMetaArch based on the config.
Raises:
ValueError: If ssd_config.type is not recognized (i.e. not registered in
model_class_map).
"""
num_classes = ssd_config.num_classes
_check_feature_extractor_exists(ssd_config.feature_extractor.type)
# Feature extractor
feature_extractor = _build_ssd_feature_extractor(
feature_extractor_config=ssd_config.feature_extractor,
freeze_batchnorm=ssd_config.freeze_batchnorm,
is_training=is_training)
box_coder = box_coder_builder.build(ssd_config.box_coder)
matcher = matcher_builder.build(ssd_config.matcher)
region_similarity_calculator = sim_calc.build(
ssd_config.similarity_calculator)
encode_background_as_zeros = ssd_config.encode_background_as_zeros
negative_class_weight = ssd_config.negative_class_weight
anchor_generator = anchor_generator_builder.build(
ssd_config.anchor_generator)
if feature_extractor.is_keras_model:
ssd_box_predictor = box_predictor_builder.build_keras(
hyperparams_fn=hyperparams_builder.KerasLayerHyperparams,
freeze_batchnorm=ssd_config.freeze_batchnorm,
inplace_batchnorm_update=False,
num_predictions_per_location_list=anchor_generator
.num_anchors_per_location(),
box_predictor_config=ssd_config.box_predictor,
is_training=is_training,
num_classes=num_classes,
add_background_class=ssd_config.add_background_class)
else:
ssd_box_predictor = box_predictor_builder.build(
hyperparams_builder.build, ssd_config.box_predictor, is_training,
num_classes, ssd_config.add_background_class)
image_resizer_fn = image_resizer_builder.build(ssd_config.image_resizer)
non_max_suppression_fn, score_conversion_fn = post_processing_builder.build(
ssd_config.post_processing)
(classification_loss, localization_loss, classification_weight,
localization_weight, hard_example_miner, random_example_sampler,
expected_loss_weights_fn) = losses_builder.build(ssd_config.loss)
normalize_loss_by_num_matches = ssd_config.normalize_loss_by_num_matches
normalize_loc_loss_by_codesize = ssd_config.normalize_loc_loss_by_codesize
equalization_loss_config = ops.EqualizationLossConfig(
weight=ssd_config.loss.equalization_loss.weight,
exclude_prefixes=ssd_config.loss.equalization_loss.exclude_prefixes)
target_assigner_instance = target_assigner.TargetAssigner(
region_similarity_calculator,
matcher,
box_coder,
negative_class_weight=negative_class_weight)
ssd_meta_arch_fn = ssd_meta_arch.SSDMetaArch
kwargs = {}
return ssd_meta_arch_fn(
is_training=is_training,
anchor_generator=anchor_generator,
box_predictor=ssd_box_predictor,
box_coder=box_coder,
feature_extractor=feature_extractor,
encode_background_as_zeros=encode_background_as_zeros,
image_resizer_fn=image_resizer_fn,
non_max_suppression_fn=non_max_suppression_fn,
score_conversion_fn=score_conversion_fn,
classification_loss=classification_loss,
localization_loss=localization_loss,
classification_loss_weight=classification_weight,
localization_loss_weight=localization_weight,
normalize_loss_by_num_matches=normalize_loss_by_num_matches,
hard_example_miner=hard_example_miner,
target_assigner_instance=target_assigner_instance,
add_summaries=add_summaries,
normalize_loc_loss_by_codesize=normalize_loc_loss_by_codesize,
freeze_batchnorm=ssd_config.freeze_batchnorm,
inplace_batchnorm_update=ssd_config.inplace_batchnorm_update,
add_background_class=ssd_config.add_background_class,
explicit_background_class=ssd_config.explicit_background_class,
random_example_sampler=random_example_sampler,
expected_loss_weights_fn=expected_loss_weights_fn,
use_confidences_as_targets=ssd_config.use_confidences_as_targets,
implicit_example_weight=ssd_config.implicit_example_weight,
equalization_loss_config=equalization_loss_config,
return_raw_detections_during_predict=(
ssd_config.return_raw_detections_during_predict),
**kwargs)
def _build_faster_rcnn_feature_extractor(
feature_extractor_config, is_training, reuse_weights=True,
inplace_batchnorm_update=False):
"""Builds a faster_rcnn_meta_arch.FasterRCNNFeatureExtractor based on config.
Args:
feature_extractor_config: A FasterRcnnFeatureExtractor proto config from
faster_rcnn.proto.
is_training: True if this feature extractor is being built for training.
reuse_weights: if the feature extractor should reuse weights.
inplace_batchnorm_update: Whether to update batch_norm inplace during
training. This is required for batch norm to work correctly on TPUs. When
this is false, user must add a control dependency on
tf.GraphKeys.UPDATE_OPS for train/loss op in order to update the batch
norm moving average parameters.
Returns:
faster_rcnn_meta_arch.FasterRCNNFeatureExtractor based on config.
Raises:
ValueError: On invalid feature extractor type.
"""
if inplace_batchnorm_update:
raise ValueError('inplace batchnorm updates not supported.')
feature_type = feature_extractor_config.type
first_stage_features_stride = (
feature_extractor_config.first_stage_features_stride)
batch_norm_trainable = feature_extractor_config.batch_norm_trainable
if feature_type not in FASTER_RCNN_FEATURE_EXTRACTOR_CLASS_MAP:
raise ValueError('Unknown Faster R-CNN feature_extractor: {}'.format(
feature_type))
feature_extractor_class = FASTER_RCNN_FEATURE_EXTRACTOR_CLASS_MAP[
feature_type]
return feature_extractor_class(
is_training, first_stage_features_stride,
batch_norm_trainable, reuse_weights=reuse_weights)
def _build_faster_rcnn_keras_feature_extractor(
feature_extractor_config, is_training,
inplace_batchnorm_update=False):
"""Builds a faster_rcnn_meta_arch.FasterRCNNKerasFeatureExtractor from config.
Args:
feature_extractor_config: A FasterRcnnFeatureExtractor proto config from
faster_rcnn.proto.
is_training: True if this feature extractor is being built for training.
inplace_batchnorm_update: Whether to update batch_norm inplace during
training. This is required for batch norm to work correctly on TPUs. When
this is false, user must add a control dependency on
tf.GraphKeys.UPDATE_OPS for train/loss op in order to update the batch
norm moving average parameters.
Returns:
faster_rcnn_meta_arch.FasterRCNNKerasFeatureExtractor based on config.
Raises:
ValueError: On invalid feature extractor type.
"""
if inplace_batchnorm_update:
raise ValueError('inplace batchnorm updates not supported.')
feature_type = feature_extractor_config.type
first_stage_features_stride = (
feature_extractor_config.first_stage_features_stride)
batch_norm_trainable = feature_extractor_config.batch_norm_trainable
if feature_type not in FASTER_RCNN_KERAS_FEATURE_EXTRACTOR_CLASS_MAP:
raise ValueError('Unknown Faster R-CNN feature_extractor: {}'.format(
feature_type))
feature_extractor_class = FASTER_RCNN_KERAS_FEATURE_EXTRACTOR_CLASS_MAP[
feature_type]
return feature_extractor_class(
is_training, first_stage_features_stride,
batch_norm_trainable)
def _build_faster_rcnn_model(frcnn_config, is_training, add_summaries):
"""Builds a Faster R-CNN or R-FCN detection model based on the model config.
Builds R-FCN model if the second_stage_box_predictor in the config is of type
`rfcn_box_predictor` else builds a Faster R-CNN model.
Args:
frcnn_config: A faster_rcnn.proto object containing the config for the
desired FasterRCNNMetaArch or RFCNMetaArch.
is_training: True if this model is being built for training purposes.
add_summaries: Whether to add tf summaries in the model.
Returns:
FasterRCNNMetaArch based on the config.
Raises:
ValueError: If frcnn_config.type is not recognized (i.e. not registered in
model_class_map).
"""
num_classes = frcnn_config.num_classes
image_resizer_fn = image_resizer_builder.build(frcnn_config.image_resizer)
_check_feature_extractor_exists(frcnn_config.feature_extractor.type)
is_keras = tf_version.is_tf2()
if is_keras:
feature_extractor = _build_faster_rcnn_keras_feature_extractor(
frcnn_config.feature_extractor, is_training,
inplace_batchnorm_update=frcnn_config.inplace_batchnorm_update)
else:
feature_extractor = _build_faster_rcnn_feature_extractor(
frcnn_config.feature_extractor, is_training,
inplace_batchnorm_update=frcnn_config.inplace_batchnorm_update)
number_of_stages = frcnn_config.number_of_stages
first_stage_anchor_generator = anchor_generator_builder.build(
frcnn_config.first_stage_anchor_generator)
first_stage_target_assigner = target_assigner.create_target_assigner(
'FasterRCNN',
'proposal',
use_matmul_gather=frcnn_config.use_matmul_gather_in_matcher)
first_stage_atrous_rate = frcnn_config.first_stage_atrous_rate
if is_keras:
first_stage_box_predictor_arg_scope_fn = (
hyperparams_builder.KerasLayerHyperparams(
frcnn_config.first_stage_box_predictor_conv_hyperparams))
else:
first_stage_box_predictor_arg_scope_fn = hyperparams_builder.build(
frcnn_config.first_stage_box_predictor_conv_hyperparams, is_training)
first_stage_box_predictor_kernel_size = (
frcnn_config.first_stage_box_predictor_kernel_size)
first_stage_box_predictor_depth = frcnn_config.first_stage_box_predictor_depth
first_stage_minibatch_size = frcnn_config.first_stage_minibatch_size
use_static_shapes = frcnn_config.use_static_shapes and (
frcnn_config.use_static_shapes_for_eval or is_training)
first_stage_sampler = sampler.BalancedPositiveNegativeSampler(
positive_fraction=frcnn_config.first_stage_positive_balance_fraction,
is_static=(frcnn_config.use_static_balanced_label_sampler and
use_static_shapes))
first_stage_max_proposals = frcnn_config.first_stage_max_proposals
if (frcnn_config.first_stage_nms_iou_threshold < 0 or
frcnn_config.first_stage_nms_iou_threshold > 1.0):
raise ValueError('iou_threshold not in [0, 1.0].')
if (is_training and frcnn_config.second_stage_batch_size >
first_stage_max_proposals):
raise ValueError('second_stage_batch_size should be no greater than '
'first_stage_max_proposals.')
first_stage_non_max_suppression_fn = functools.partial(
post_processing.batch_multiclass_non_max_suppression,
score_thresh=frcnn_config.first_stage_nms_score_threshold,
iou_thresh=frcnn_config.first_stage_nms_iou_threshold,
max_size_per_class=frcnn_config.first_stage_max_proposals,
max_total_size=frcnn_config.first_stage_max_proposals,
use_static_shapes=use_static_shapes,
use_partitioned_nms=frcnn_config.use_partitioned_nms_in_first_stage,
use_combined_nms=frcnn_config.use_combined_nms_in_first_stage)
first_stage_loc_loss_weight = (
frcnn_config.first_stage_localization_loss_weight)
first_stage_obj_loss_weight = frcnn_config.first_stage_objectness_loss_weight
initial_crop_size = frcnn_config.initial_crop_size
maxpool_kernel_size = frcnn_config.maxpool_kernel_size
maxpool_stride = frcnn_config.maxpool_stride
second_stage_target_assigner = target_assigner.create_target_assigner(
'FasterRCNN',
'detection',
use_matmul_gather=frcnn_config.use_matmul_gather_in_matcher)
if is_keras:
second_stage_box_predictor = box_predictor_builder.build_keras(
hyperparams_builder.KerasLayerHyperparams,
freeze_batchnorm=False,
inplace_batchnorm_update=False,
num_predictions_per_location_list=[1],
box_predictor_config=frcnn_config.second_stage_box_predictor,
is_training=is_training,
num_classes=num_classes)
else:
second_stage_box_predictor = box_predictor_builder.build(
hyperparams_builder.build,
frcnn_config.second_stage_box_predictor,
is_training=is_training,
num_classes=num_classes)
second_stage_batch_size = frcnn_config.second_stage_batch_size
second_stage_sampler = sampler.BalancedPositiveNegativeSampler(
positive_fraction=frcnn_config.second_stage_balance_fraction,
is_static=(frcnn_config.use_static_balanced_label_sampler and
use_static_shapes))
(second_stage_non_max_suppression_fn, second_stage_score_conversion_fn
) = post_processing_builder.build(frcnn_config.second_stage_post_processing)
second_stage_localization_loss_weight = (
frcnn_config.second_stage_localization_loss_weight)
second_stage_classification_loss = (
losses_builder.build_faster_rcnn_classification_loss(
frcnn_config.second_stage_classification_loss))
second_stage_classification_loss_weight = (
frcnn_config.second_stage_classification_loss_weight)
second_stage_mask_prediction_loss_weight = (
frcnn_config.second_stage_mask_prediction_loss_weight)
hard_example_miner = None
if frcnn_config.HasField('hard_example_miner'):
hard_example_miner = losses_builder.build_hard_example_miner(
frcnn_config.hard_example_miner,
second_stage_classification_loss_weight,
second_stage_localization_loss_weight)
crop_and_resize_fn = (
ops.matmul_crop_and_resize if frcnn_config.use_matmul_crop_and_resize
else ops.native_crop_and_resize)
clip_anchors_to_image = (
frcnn_config.clip_anchors_to_image)
common_kwargs = {
'is_training':
is_training,
'num_classes':
num_classes,
'image_resizer_fn':
image_resizer_fn,
'feature_extractor':
feature_extractor,
'number_of_stages':
number_of_stages,
'first_stage_anchor_generator':
first_stage_anchor_generator,
'first_stage_target_assigner':
first_stage_target_assigner,
'first_stage_atrous_rate':
first_stage_atrous_rate,
'first_stage_box_predictor_arg_scope_fn':
first_stage_box_predictor_arg_scope_fn,
'first_stage_box_predictor_kernel_size':
first_stage_box_predictor_kernel_size,
'first_stage_box_predictor_depth':
first_stage_box_predictor_depth,
'first_stage_minibatch_size':
first_stage_minibatch_size,
'first_stage_sampler':
first_stage_sampler,
'first_stage_non_max_suppression_fn':
first_stage_non_max_suppression_fn,
'first_stage_max_proposals':
first_stage_max_proposals,
'first_stage_localization_loss_weight':
first_stage_loc_loss_weight,
'first_stage_objectness_loss_weight':
first_stage_obj_loss_weight,
'second_stage_target_assigner':
second_stage_target_assigner,
'second_stage_batch_size':
second_stage_batch_size,
'second_stage_sampler':
second_stage_sampler,
'second_stage_non_max_suppression_fn':
second_stage_non_max_suppression_fn,
'second_stage_score_conversion_fn':
second_stage_score_conversion_fn,
'second_stage_localization_loss_weight':
second_stage_localization_loss_weight,
'second_stage_classification_loss':
second_stage_classification_loss,
'second_stage_classification_loss_weight':
second_stage_classification_loss_weight,
'hard_example_miner':
hard_example_miner,
'add_summaries':
add_summaries,
'crop_and_resize_fn':
crop_and_resize_fn,
'clip_anchors_to_image':
clip_anchors_to_image,
'use_static_shapes':
use_static_shapes,
'resize_masks':
frcnn_config.resize_masks,
'return_raw_detections_during_predict':
frcnn_config.return_raw_detections_during_predict,
'output_final_box_features':
frcnn_config.output_final_box_features
}
if ((not is_keras and isinstance(second_stage_box_predictor,
rfcn_box_predictor.RfcnBoxPredictor)) or
(is_keras and
isinstance(second_stage_box_predictor,
rfcn_keras_box_predictor.RfcnKerasBoxPredictor))):
return rfcn_meta_arch.RFCNMetaArch(
second_stage_rfcn_box_predictor=second_stage_box_predictor,
**common_kwargs)
elif frcnn_config.HasField('context_config'):
context_config = frcnn_config.context_config
common_kwargs.update({
'attention_bottleneck_dimension':
context_config.attention_bottleneck_dimension,
'attention_temperature':
context_config.attention_temperature
})
return context_rcnn_meta_arch.ContextRCNNMetaArch(
initial_crop_size=initial_crop_size,
maxpool_kernel_size=maxpool_kernel_size,
maxpool_stride=maxpool_stride,
second_stage_mask_rcnn_box_predictor=second_stage_box_predictor,
second_stage_mask_prediction_loss_weight=(
second_stage_mask_prediction_loss_weight),
**common_kwargs)
else:
return faster_rcnn_meta_arch.FasterRCNNMetaArch(
initial_crop_size=initial_crop_size,
maxpool_kernel_size=maxpool_kernel_size,
maxpool_stride=maxpool_stride,
second_stage_mask_rcnn_box_predictor=second_stage_box_predictor,
second_stage_mask_prediction_loss_weight=(
second_stage_mask_prediction_loss_weight),
**common_kwargs)
EXPERIMENTAL_META_ARCH_BUILDER_MAP = {
}
def _build_experimental_model(config, is_training, add_summaries=True):
return EXPERIMENTAL_META_ARCH_BUILDER_MAP[config.name](
is_training, add_summaries)
# The class ID in the groundtruth/model architecture is usually 0-based while
# the ID in the label map is 1-based. The offset is used to convert between the
# the two.
CLASS_ID_OFFSET = 1
KEYPOINT_STD_DEV_DEFAULT = 1.0
def keypoint_proto_to_params(kp_config, keypoint_map_dict):
"""Converts CenterNet.KeypointEstimation proto to parameter namedtuple."""
label_map_item = keypoint_map_dict[kp_config.keypoint_class_name]
classification_loss, localization_loss, _, _, _, _, _ = (
losses_builder.build(kp_config.loss))
keypoint_indices = [
keypoint.id for keypoint in label_map_item.keypoints
]
keypoint_labels = [
keypoint.label for keypoint in label_map_item.keypoints
]
keypoint_std_dev_dict = {
label: KEYPOINT_STD_DEV_DEFAULT for label in keypoint_labels
}
if kp_config.keypoint_label_to_std:
for label, value in kp_config.keypoint_label_to_std.items():
keypoint_std_dev_dict[label] = value
keypoint_std_dev = [keypoint_std_dev_dict[label] for label in keypoint_labels]
return center_net_meta_arch.KeypointEstimationParams(
task_name=kp_config.task_name,
class_id=label_map_item.id - CLASS_ID_OFFSET,
keypoint_indices=keypoint_indices,
classification_loss=classification_loss,
localization_loss=localization_loss,
keypoint_labels=keypoint_labels,
keypoint_std_dev=keypoint_std_dev,
task_loss_weight=kp_config.task_loss_weight,
keypoint_regression_loss_weight=kp_config.keypoint_regression_loss_weight,
keypoint_heatmap_loss_weight=kp_config.keypoint_heatmap_loss_weight,
keypoint_offset_loss_weight=kp_config.keypoint_offset_loss_weight,
heatmap_bias_init=kp_config.heatmap_bias_init,
keypoint_candidate_score_threshold=(
kp_config.keypoint_candidate_score_threshold),
num_candidates_per_keypoint=kp_config.num_candidates_per_keypoint,
peak_max_pool_kernel_size=kp_config.peak_max_pool_kernel_size,
unmatched_keypoint_score=kp_config.unmatched_keypoint_score,
box_scale=kp_config.box_scale,
candidate_search_scale=kp_config.candidate_search_scale,
candidate_ranking_mode=kp_config.candidate_ranking_mode,
offset_peak_radius=kp_config.offset_peak_radius,
per_keypoint_offset=kp_config.per_keypoint_offset)
def object_detection_proto_to_params(od_config):
"""Converts CenterNet.ObjectDetection proto to parameter namedtuple."""
loss = losses_pb2.Loss()
# Add dummy classification loss to avoid the loss_builder throwing error.
# TODO(yuhuic): update the loss builder to take the classification loss
# directly.
loss.classification_loss.weighted_sigmoid.CopyFrom(
losses_pb2.WeightedSigmoidClassificationLoss())
loss.localization_loss.CopyFrom(od_config.localization_loss)
_, localization_loss, _, _, _, _, _ = (losses_builder.build(loss))
return center_net_meta_arch.ObjectDetectionParams(
localization_loss=localization_loss,
scale_loss_weight=od_config.scale_loss_weight,
offset_loss_weight=od_config.offset_loss_weight,
task_loss_weight=od_config.task_loss_weight)
def object_center_proto_to_params(oc_config):
"""Converts CenterNet.ObjectCenter proto to parameter namedtuple."""
loss = losses_pb2.Loss()
# Add dummy localization loss to avoid the loss_builder throwing error.
# TODO(yuhuic): update the loss builder to take the localization loss
# directly.
loss.localization_loss.weighted_l2.CopyFrom(
losses_pb2.WeightedL2LocalizationLoss())
loss.classification_loss.CopyFrom(oc_config.classification_loss)
classification_loss, _, _, _, _, _, _ = (losses_builder.build(loss))
return center_net_meta_arch.ObjectCenterParams(
classification_loss=classification_loss,
object_center_loss_weight=oc_config.object_center_loss_weight,
heatmap_bias_init=oc_config.heatmap_bias_init,
min_box_overlap_iou=oc_config.min_box_overlap_iou,
max_box_predictions=oc_config.max_box_predictions,
use_labeled_classes=oc_config.use_labeled_classes)
def mask_proto_to_params(mask_config):
"""Converts CenterNet.MaskEstimation proto to parameter namedtuple."""
loss = losses_pb2.Loss()
# Add dummy localization loss to avoid the loss_builder throwing error.
loss.localization_loss.weighted_l2.CopyFrom(
losses_pb2.WeightedL2LocalizationLoss())
loss.classification_loss.CopyFrom(mask_config.classification_loss)
classification_loss, _, _, _, _, _, _ = (losses_builder.build(loss))
return center_net_meta_arch.MaskParams(
classification_loss=classification_loss,
task_loss_weight=mask_config.task_loss_weight,
mask_height=mask_config.mask_height,
mask_width=mask_config.mask_width,
score_threshold=mask_config.score_threshold,
heatmap_bias_init=mask_config.heatmap_bias_init)
def _build_center_net_model(center_net_config, is_training, add_summaries):
"""Build a CenterNet detection model.
Args:
center_net_config: A CenterNet proto object with model configuration.
is_training: True if this model is being built for training purposes.
add_summaries: Whether to add tf summaries in the model.
Returns:
CenterNetMetaArch based on the config.
"""
image_resizer_fn = image_resizer_builder.build(
center_net_config.image_resizer)
_check_feature_extractor_exists(center_net_config.feature_extractor.type)
feature_extractor = _build_center_net_feature_extractor(
center_net_config.feature_extractor)
object_center_params = object_center_proto_to_params(
center_net_config.object_center_params)
object_detection_params = None
if center_net_config.HasField('object_detection_task'):
object_detection_params = object_detection_proto_to_params(
center_net_config.object_detection_task)
keypoint_params_dict = None
if center_net_config.keypoint_estimation_task:
label_map_proto = label_map_util.load_labelmap(
center_net_config.keypoint_label_map_path)
keypoint_map_dict = {
item.name: item for item in label_map_proto.item if item.keypoints
}
keypoint_params_dict = {}
keypoint_class_id_set = set()
all_keypoint_indices = []
for task in center_net_config.keypoint_estimation_task:
kp_params = keypoint_proto_to_params(task, keypoint_map_dict)
keypoint_params_dict[task.task_name] = kp_params
all_keypoint_indices.extend(kp_params.keypoint_indices)
if kp_params.class_id in keypoint_class_id_set:
raise ValueError(('Multiple keypoint tasks map to the same class id is '
'not allowed: %d' % kp_params.class_id))
else:
keypoint_class_id_set.add(kp_params.class_id)
if len(all_keypoint_indices) > len(set(all_keypoint_indices)):
raise ValueError('Some keypoint indices are used more than once.')
mask_params = None
if center_net_config.HasField('mask_estimation_task'):
mask_params = mask_proto_to_params(center_net_config.mask_estimation_task)
return center_net_meta_arch.CenterNetMetaArch(
is_training=is_training,
add_summaries=add_summaries,
num_classes=center_net_config.num_classes,
feature_extractor=feature_extractor,
image_resizer_fn=image_resizer_fn,
object_center_params=object_center_params,
object_detection_params=object_detection_params,
keypoint_params_dict=keypoint_params_dict,
mask_params=mask_params)
def _build_center_net_feature_extractor(
feature_extractor_config):
"""Build a CenterNet feature extractor from the given config."""
if feature_extractor_config.type not in CENTER_NET_EXTRACTOR_FUNCTION_MAP:
raise ValueError('\'{}\' is not a known CenterNet feature extractor type'
.format(feature_extractor_config.type))
return CENTER_NET_EXTRACTOR_FUNCTION_MAP[feature_extractor_config.type](
channel_means=list(feature_extractor_config.channel_means),
channel_stds=list(feature_extractor_config.channel_stds),
bgr_ordering=feature_extractor_config.bgr_ordering
)
META_ARCH_BUILDER_MAP = {
'ssd': _build_ssd_model,
'faster_rcnn': _build_faster_rcnn_model,
'experimental_model': _build_experimental_model,
'center_net': _build_center_net_model
}
def build(model_config, is_training, add_summaries=True):
"""Builds a DetectionModel based on the model config.
Args:
model_config: A model.proto object containing the config for the desired
DetectionModel.
is_training: True if this model is being built for training purposes.
add_summaries: Whether to add tensorflow summaries in the model graph.
Returns:
DetectionModel based on the config.
Raises:
ValueError: On invalid meta architecture or model.
"""
if not isinstance(model_config, model_pb2.DetectionModel):
raise ValueError('model_config not of type model_pb2.DetectionModel.')
meta_architecture = model_config.WhichOneof('model')
if meta_architecture not in META_ARCH_BUILDER_MAP:
raise ValueError('Unknown meta architecture: {}'.format(meta_architecture))
else:
build_func = META_ARCH_BUILDER_MAP[meta_architecture]
return build_func(getattr(model_config, meta_architecture), is_training,
add_summaries)
|