File size: 7,499 Bytes
97b6013
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

"""Functions to build DetectionModel training optimizers."""

import tensorflow.compat.v1 as tf

from object_detection.utils import learning_schedules

try:
  from tensorflow.contrib import opt as tf_opt  # pylint: disable=g-import-not-at-top
except:  # pylint: disable=bare-except
  pass


def build_optimizers_tf_v1(optimizer_config, global_step=None):
  """Create a TF v1 compatible optimizer based on config.

  Args:
    optimizer_config: A Optimizer proto message.
    global_step: A variable representing the current step.
      If None, defaults to tf.train.get_or_create_global_step()

  Returns:
    An optimizer and a list of variables for summary.

  Raises:
    ValueError: when using an unsupported input data type.
  """
  optimizer_type = optimizer_config.WhichOneof('optimizer')
  optimizer = None

  summary_vars = []
  if optimizer_type == 'rms_prop_optimizer':
    config = optimizer_config.rms_prop_optimizer
    learning_rate = _create_learning_rate(config.learning_rate,
                                          global_step=global_step)
    summary_vars.append(learning_rate)
    optimizer = tf.train.RMSPropOptimizer(
        learning_rate,
        decay=config.decay,
        momentum=config.momentum_optimizer_value,
        epsilon=config.epsilon)

  if optimizer_type == 'momentum_optimizer':
    config = optimizer_config.momentum_optimizer
    learning_rate = _create_learning_rate(config.learning_rate,
                                          global_step=global_step)
    summary_vars.append(learning_rate)
    optimizer = tf.train.MomentumOptimizer(
        learning_rate,
        momentum=config.momentum_optimizer_value)

  if optimizer_type == 'adam_optimizer':
    config = optimizer_config.adam_optimizer
    learning_rate = _create_learning_rate(config.learning_rate,
                                          global_step=global_step)
    summary_vars.append(learning_rate)
    optimizer = tf.train.AdamOptimizer(learning_rate, epsilon=config.epsilon)


  if optimizer is None:
    raise ValueError('Optimizer %s not supported.' % optimizer_type)

  if optimizer_config.use_moving_average:
    optimizer = tf_opt.MovingAverageOptimizer(
        optimizer, average_decay=optimizer_config.moving_average_decay)

  return optimizer, summary_vars


def build_optimizers_tf_v2(optimizer_config, global_step=None):
  """Create a TF v2 compatible optimizer based on config.

  Args:
    optimizer_config: A Optimizer proto message.
    global_step: A variable representing the current step.
      If None, defaults to tf.train.get_or_create_global_step()

  Returns:
    An optimizer and a list of variables for summary.

  Raises:
    ValueError: when using an unsupported input data type.
  """
  optimizer_type = optimizer_config.WhichOneof('optimizer')
  optimizer = None

  summary_vars = []
  if optimizer_type == 'rms_prop_optimizer':
    config = optimizer_config.rms_prop_optimizer
    learning_rate = _create_learning_rate(config.learning_rate,
                                          global_step=global_step)
    summary_vars.append(learning_rate)
    optimizer = tf.keras.optimizers.RMSprop(
        learning_rate,
        decay=config.decay,
        momentum=config.momentum_optimizer_value,
        epsilon=config.epsilon)

  if optimizer_type == 'momentum_optimizer':
    config = optimizer_config.momentum_optimizer
    learning_rate = _create_learning_rate(config.learning_rate,
                                          global_step=global_step)
    summary_vars.append(learning_rate)
    optimizer = tf.keras.optimizers.SGD(
        learning_rate,
        momentum=config.momentum_optimizer_value)

  if optimizer_type == 'adam_optimizer':
    config = optimizer_config.adam_optimizer
    learning_rate = _create_learning_rate(config.learning_rate,
                                          global_step=global_step)
    summary_vars.append(learning_rate)
    optimizer = tf.keras.optimizers.Adam(learning_rate, epsilon=config.epsilon)

  if optimizer is None:
    raise ValueError('Optimizer %s not supported.' % optimizer_type)

  if optimizer_config.use_moving_average:
    raise ValueError('Moving average not supported in eager mode.')

  return optimizer, summary_vars


def build(config, global_step=None):

  if tf.executing_eagerly():
    return build_optimizers_tf_v2(config, global_step)
  else:
    return build_optimizers_tf_v1(config, global_step)


def _create_learning_rate(learning_rate_config, global_step=None):
  """Create optimizer learning rate based on config.

  Args:
    learning_rate_config: A LearningRate proto message.
    global_step: A variable representing the current step.
      If None, defaults to tf.train.get_or_create_global_step()

  Returns:
    A learning rate.

  Raises:
    ValueError: when using an unsupported input data type.
  """
  if global_step is None:
    global_step = tf.train.get_or_create_global_step()
  learning_rate = None
  learning_rate_type = learning_rate_config.WhichOneof('learning_rate')
  if learning_rate_type == 'constant_learning_rate':
    config = learning_rate_config.constant_learning_rate
    learning_rate = tf.constant(config.learning_rate, dtype=tf.float32,
                                name='learning_rate')

  if learning_rate_type == 'exponential_decay_learning_rate':
    config = learning_rate_config.exponential_decay_learning_rate
    learning_rate = learning_schedules.exponential_decay_with_burnin(
        global_step,
        config.initial_learning_rate,
        config.decay_steps,
        config.decay_factor,
        burnin_learning_rate=config.burnin_learning_rate,
        burnin_steps=config.burnin_steps,
        min_learning_rate=config.min_learning_rate,
        staircase=config.staircase)

  if learning_rate_type == 'manual_step_learning_rate':
    config = learning_rate_config.manual_step_learning_rate
    if not config.schedule:
      raise ValueError('Empty learning rate schedule.')
    learning_rate_step_boundaries = [x.step for x in config.schedule]
    learning_rate_sequence = [config.initial_learning_rate]
    learning_rate_sequence += [x.learning_rate for x in config.schedule]
    learning_rate = learning_schedules.manual_stepping(
        global_step, learning_rate_step_boundaries,
        learning_rate_sequence, config.warmup)

  if learning_rate_type == 'cosine_decay_learning_rate':
    config = learning_rate_config.cosine_decay_learning_rate
    learning_rate = learning_schedules.cosine_decay_with_warmup(
        global_step,
        config.learning_rate_base,
        config.total_steps,
        config.warmup_learning_rate,
        config.warmup_steps,
        config.hold_base_rate_steps)

  if learning_rate is None:
    raise ValueError('Learning_rate %s not supported.' % learning_rate_type)

  return learning_rate