File size: 17,897 Bytes
97b6013 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 |
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for eval_util."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import unittest
from absl.testing import parameterized
import numpy as np
import six
from six.moves import range
import tensorflow.compat.v1 as tf
from object_detection import eval_util
from object_detection.core import standard_fields as fields
from object_detection.metrics import coco_evaluation
from object_detection.protos import eval_pb2
from object_detection.utils import test_case
from object_detection.utils import tf_version
class EvalUtilTest(test_case.TestCase, parameterized.TestCase):
def _get_categories_list(self):
return [{'id': 1, 'name': 'person'},
{'id': 2, 'name': 'dog'},
{'id': 3, 'name': 'cat'}]
def _get_categories_list_with_keypoints(self):
return [{
'id': 1,
'name': 'person',
'keypoints': {
'left_eye': 0,
'right_eye': 3
}
}, {
'id': 2,
'name': 'dog',
'keypoints': {
'tail_start': 1,
'mouth': 2
}
}, {
'id': 3,
'name': 'cat'
}]
def _make_evaluation_dict(self,
resized_groundtruth_masks=False,
batch_size=1,
max_gt_boxes=None,
scale_to_absolute=False):
input_data_fields = fields.InputDataFields
detection_fields = fields.DetectionResultFields
image = tf.zeros(shape=[batch_size, 20, 20, 3], dtype=tf.uint8)
if batch_size == 1:
key = tf.constant('image1')
else:
key = tf.constant([str(i) for i in range(batch_size)])
detection_boxes = tf.tile(tf.constant([[[0., 0., 1., 1.]]]),
multiples=[batch_size, 1, 1])
detection_scores = tf.tile(tf.constant([[0.8]]), multiples=[batch_size, 1])
detection_classes = tf.tile(tf.constant([[0]]), multiples=[batch_size, 1])
detection_masks = tf.tile(tf.ones(shape=[1, 1, 20, 20], dtype=tf.float32),
multiples=[batch_size, 1, 1, 1])
num_detections = tf.ones([batch_size])
groundtruth_boxes = tf.constant([[0., 0., 1., 1.]])
groundtruth_classes = tf.constant([1])
groundtruth_instance_masks = tf.ones(shape=[1, 20, 20], dtype=tf.uint8)
groundtruth_keypoints = tf.constant([[0.0, 0.0], [0.5, 0.5], [1.0, 1.0]])
if resized_groundtruth_masks:
groundtruth_instance_masks = tf.ones(shape=[1, 10, 10], dtype=tf.uint8)
if batch_size > 1:
groundtruth_boxes = tf.tile(tf.expand_dims(groundtruth_boxes, 0),
multiples=[batch_size, 1, 1])
groundtruth_classes = tf.tile(tf.expand_dims(groundtruth_classes, 0),
multiples=[batch_size, 1])
groundtruth_instance_masks = tf.tile(
tf.expand_dims(groundtruth_instance_masks, 0),
multiples=[batch_size, 1, 1, 1])
groundtruth_keypoints = tf.tile(
tf.expand_dims(groundtruth_keypoints, 0),
multiples=[batch_size, 1, 1])
detections = {
detection_fields.detection_boxes: detection_boxes,
detection_fields.detection_scores: detection_scores,
detection_fields.detection_classes: detection_classes,
detection_fields.detection_masks: detection_masks,
detection_fields.num_detections: num_detections
}
groundtruth = {
input_data_fields.groundtruth_boxes: groundtruth_boxes,
input_data_fields.groundtruth_classes: groundtruth_classes,
input_data_fields.groundtruth_keypoints: groundtruth_keypoints,
input_data_fields.groundtruth_instance_masks: groundtruth_instance_masks
}
if batch_size > 1:
return eval_util.result_dict_for_batched_example(
image, key, detections, groundtruth,
scale_to_absolute=scale_to_absolute,
max_gt_boxes=max_gt_boxes)
else:
return eval_util.result_dict_for_single_example(
image, key, detections, groundtruth,
scale_to_absolute=scale_to_absolute)
@parameterized.parameters(
{'batch_size': 1, 'max_gt_boxes': None, 'scale_to_absolute': True},
{'batch_size': 8, 'max_gt_boxes': [1], 'scale_to_absolute': True},
{'batch_size': 1, 'max_gt_boxes': None, 'scale_to_absolute': False},
{'batch_size': 8, 'max_gt_boxes': [1], 'scale_to_absolute': False}
)
@unittest.skipIf(tf_version.is_tf2(), 'Only compatible with TF1.X')
def test_get_eval_metric_ops_for_coco_detections(self, batch_size=1,
max_gt_boxes=None,
scale_to_absolute=False):
eval_config = eval_pb2.EvalConfig()
eval_config.metrics_set.extend(['coco_detection_metrics'])
categories = self._get_categories_list()
eval_dict = self._make_evaluation_dict(batch_size=batch_size,
max_gt_boxes=max_gt_boxes,
scale_to_absolute=scale_to_absolute)
metric_ops = eval_util.get_eval_metric_ops_for_evaluators(
eval_config, categories, eval_dict)
_, update_op = metric_ops['DetectionBoxes_Precision/mAP']
with self.test_session() as sess:
metrics = {}
for key, (value_op, _) in six.iteritems(metric_ops):
metrics[key] = value_op
sess.run(update_op)
metrics = sess.run(metrics)
self.assertAlmostEqual(1.0, metrics['DetectionBoxes_Precision/mAP'])
self.assertNotIn('DetectionMasks_Precision/mAP', metrics)
@parameterized.parameters(
{'batch_size': 1, 'max_gt_boxes': None, 'scale_to_absolute': True},
{'batch_size': 8, 'max_gt_boxes': [1], 'scale_to_absolute': True},
{'batch_size': 1, 'max_gt_boxes': None, 'scale_to_absolute': False},
{'batch_size': 8, 'max_gt_boxes': [1], 'scale_to_absolute': False}
)
@unittest.skipIf(tf_version.is_tf2(), 'Only compatible with TF1.X')
def test_get_eval_metric_ops_for_coco_detections_and_masks(
self, batch_size=1, max_gt_boxes=None, scale_to_absolute=False):
eval_config = eval_pb2.EvalConfig()
eval_config.metrics_set.extend(
['coco_detection_metrics', 'coco_mask_metrics'])
categories = self._get_categories_list()
eval_dict = self._make_evaluation_dict(batch_size=batch_size,
max_gt_boxes=max_gt_boxes,
scale_to_absolute=scale_to_absolute)
metric_ops = eval_util.get_eval_metric_ops_for_evaluators(
eval_config, categories, eval_dict)
_, update_op_boxes = metric_ops['DetectionBoxes_Precision/mAP']
_, update_op_masks = metric_ops['DetectionMasks_Precision/mAP']
with self.test_session() as sess:
metrics = {}
for key, (value_op, _) in six.iteritems(metric_ops):
metrics[key] = value_op
sess.run(update_op_boxes)
sess.run(update_op_masks)
metrics = sess.run(metrics)
self.assertAlmostEqual(1.0, metrics['DetectionBoxes_Precision/mAP'])
self.assertAlmostEqual(1.0, metrics['DetectionMasks_Precision/mAP'])
@parameterized.parameters(
{'batch_size': 1, 'max_gt_boxes': None, 'scale_to_absolute': True},
{'batch_size': 8, 'max_gt_boxes': [1], 'scale_to_absolute': True},
{'batch_size': 1, 'max_gt_boxes': None, 'scale_to_absolute': False},
{'batch_size': 8, 'max_gt_boxes': [1], 'scale_to_absolute': False}
)
@unittest.skipIf(tf_version.is_tf2(), 'Only compatible with TF1.X')
def test_get_eval_metric_ops_for_coco_detections_and_resized_masks(
self, batch_size=1, max_gt_boxes=None, scale_to_absolute=False):
eval_config = eval_pb2.EvalConfig()
eval_config.metrics_set.extend(
['coco_detection_metrics', 'coco_mask_metrics'])
categories = self._get_categories_list()
eval_dict = self._make_evaluation_dict(batch_size=batch_size,
max_gt_boxes=max_gt_boxes,
scale_to_absolute=scale_to_absolute,
resized_groundtruth_masks=True)
metric_ops = eval_util.get_eval_metric_ops_for_evaluators(
eval_config, categories, eval_dict)
_, update_op_boxes = metric_ops['DetectionBoxes_Precision/mAP']
_, update_op_masks = metric_ops['DetectionMasks_Precision/mAP']
with self.test_session() as sess:
metrics = {}
for key, (value_op, _) in six.iteritems(metric_ops):
metrics[key] = value_op
sess.run(update_op_boxes)
sess.run(update_op_masks)
metrics = sess.run(metrics)
self.assertAlmostEqual(1.0, metrics['DetectionBoxes_Precision/mAP'])
self.assertAlmostEqual(1.0, metrics['DetectionMasks_Precision/mAP'])
@unittest.skipIf(tf_version.is_tf2(), 'Only compatible with TF1.X')
def test_get_eval_metric_ops_raises_error_with_unsupported_metric(self):
eval_config = eval_pb2.EvalConfig()
eval_config.metrics_set.extend(['unsupported_metric'])
categories = self._get_categories_list()
eval_dict = self._make_evaluation_dict()
with self.assertRaises(ValueError):
eval_util.get_eval_metric_ops_for_evaluators(
eval_config, categories, eval_dict)
def test_get_eval_metric_ops_for_evaluators(self):
eval_config = eval_pb2.EvalConfig()
eval_config.metrics_set.extend([
'coco_detection_metrics', 'coco_mask_metrics',
'precision_at_recall_detection_metrics'
])
eval_config.include_metrics_per_category = True
eval_config.recall_lower_bound = 0.2
eval_config.recall_upper_bound = 0.6
evaluator_options = eval_util.evaluator_options_from_eval_config(
eval_config)
self.assertTrue(evaluator_options['coco_detection_metrics']
['include_metrics_per_category'])
self.assertTrue(
evaluator_options['coco_mask_metrics']['include_metrics_per_category'])
self.assertAlmostEqual(
evaluator_options['precision_at_recall_detection_metrics']
['recall_lower_bound'], eval_config.recall_lower_bound)
self.assertAlmostEqual(
evaluator_options['precision_at_recall_detection_metrics']
['recall_upper_bound'], eval_config.recall_upper_bound)
def test_get_evaluator_with_evaluator_options(self):
eval_config = eval_pb2.EvalConfig()
eval_config.metrics_set.extend(
['coco_detection_metrics', 'precision_at_recall_detection_metrics'])
eval_config.include_metrics_per_category = True
eval_config.recall_lower_bound = 0.2
eval_config.recall_upper_bound = 0.6
categories = self._get_categories_list()
evaluator_options = eval_util.evaluator_options_from_eval_config(
eval_config)
evaluator = eval_util.get_evaluators(eval_config, categories,
evaluator_options)
self.assertTrue(evaluator[0]._include_metrics_per_category)
self.assertAlmostEqual(evaluator[1]._recall_lower_bound,
eval_config.recall_lower_bound)
self.assertAlmostEqual(evaluator[1]._recall_upper_bound,
eval_config.recall_upper_bound)
def test_get_evaluator_with_no_evaluator_options(self):
eval_config = eval_pb2.EvalConfig()
eval_config.metrics_set.extend(
['coco_detection_metrics', 'precision_at_recall_detection_metrics'])
eval_config.include_metrics_per_category = True
eval_config.recall_lower_bound = 0.2
eval_config.recall_upper_bound = 0.6
categories = self._get_categories_list()
evaluator = eval_util.get_evaluators(
eval_config, categories, evaluator_options=None)
# Even though we are setting eval_config.include_metrics_per_category = True
# and bounds on recall, these options are never passed into the
# DetectionEvaluator constructor (via `evaluator_options`).
self.assertFalse(evaluator[0]._include_metrics_per_category)
self.assertAlmostEqual(evaluator[1]._recall_lower_bound, 0.0)
self.assertAlmostEqual(evaluator[1]._recall_upper_bound, 1.0)
def test_get_evaluator_with_keypoint_metrics(self):
eval_config = eval_pb2.EvalConfig()
person_keypoints_metric = eval_config.parameterized_metric.add()
person_keypoints_metric.coco_keypoint_metrics.class_label = 'person'
person_keypoints_metric.coco_keypoint_metrics.keypoint_label_to_sigmas[
'left_eye'] = 0.1
person_keypoints_metric.coco_keypoint_metrics.keypoint_label_to_sigmas[
'right_eye'] = 0.2
dog_keypoints_metric = eval_config.parameterized_metric.add()
dog_keypoints_metric.coco_keypoint_metrics.class_label = 'dog'
dog_keypoints_metric.coco_keypoint_metrics.keypoint_label_to_sigmas[
'tail_start'] = 0.3
dog_keypoints_metric.coco_keypoint_metrics.keypoint_label_to_sigmas[
'mouth'] = 0.4
categories = self._get_categories_list_with_keypoints()
evaluator = eval_util.get_evaluators(
eval_config, categories, evaluator_options=None)
# Verify keypoint evaluator class variables.
self.assertLen(evaluator, 3)
self.assertFalse(evaluator[0]._include_metrics_per_category)
self.assertEqual(evaluator[1]._category_name, 'person')
self.assertEqual(evaluator[2]._category_name, 'dog')
self.assertAllEqual(evaluator[1]._keypoint_ids, [0, 3])
self.assertAllEqual(evaluator[2]._keypoint_ids, [1, 2])
self.assertAllClose([0.1, 0.2], evaluator[1]._oks_sigmas)
self.assertAllClose([0.3, 0.4], evaluator[2]._oks_sigmas)
def test_get_evaluator_with_unmatched_label(self):
eval_config = eval_pb2.EvalConfig()
person_keypoints_metric = eval_config.parameterized_metric.add()
person_keypoints_metric.coco_keypoint_metrics.class_label = 'unmatched'
person_keypoints_metric.coco_keypoint_metrics.keypoint_label_to_sigmas[
'kpt'] = 0.1
categories = self._get_categories_list_with_keypoints()
evaluator = eval_util.get_evaluators(
eval_config, categories, evaluator_options=None)
self.assertLen(evaluator, 1)
self.assertNotIsInstance(
evaluator[0], coco_evaluation.CocoKeypointEvaluator)
def test_padded_image_result_dict(self):
input_data_fields = fields.InputDataFields
detection_fields = fields.DetectionResultFields
key = tf.constant([str(i) for i in range(2)])
detection_boxes = np.array([[[0., 0., 1., 1.]], [[0.0, 0.0, 0.5, 0.5]]],
dtype=np.float32)
detection_keypoints = np.array([[0.0, 0.0], [0.5, 0.5], [1.0, 1.0]],
dtype=np.float32)
def graph_fn():
detections = {
detection_fields.detection_boxes:
tf.constant(detection_boxes),
detection_fields.detection_scores:
tf.constant([[1.], [1.]]),
detection_fields.detection_classes:
tf.constant([[1], [2]]),
detection_fields.num_detections:
tf.constant([1, 1]),
detection_fields.detection_keypoints:
tf.tile(
tf.reshape(
tf.constant(detection_keypoints), shape=[1, 1, 3, 2]),
multiples=[2, 1, 1, 1])
}
gt_boxes = detection_boxes
groundtruth = {
input_data_fields.groundtruth_boxes:
tf.constant(gt_boxes),
input_data_fields.groundtruth_classes:
tf.constant([[1.], [1.]]),
input_data_fields.groundtruth_keypoints:
tf.tile(
tf.reshape(
tf.constant(detection_keypoints), shape=[1, 1, 3, 2]),
multiples=[2, 1, 1, 1])
}
image = tf.zeros((2, 100, 100, 3), dtype=tf.float32)
true_image_shapes = tf.constant([[100, 100, 3], [50, 100, 3]])
original_image_spatial_shapes = tf.constant([[200, 200], [150, 300]])
result = eval_util.result_dict_for_batched_example(
image, key, detections, groundtruth,
scale_to_absolute=True,
true_image_shapes=true_image_shapes,
original_image_spatial_shapes=original_image_spatial_shapes,
max_gt_boxes=tf.constant(1))
return (result[input_data_fields.groundtruth_boxes],
result[input_data_fields.groundtruth_keypoints],
result[detection_fields.detection_boxes],
result[detection_fields.detection_keypoints])
(gt_boxes, gt_keypoints, detection_boxes,
detection_keypoints) = self.execute_cpu(graph_fn, [])
self.assertAllEqual(
[[[0., 0., 200., 200.]], [[0.0, 0.0, 150., 150.]]],
gt_boxes)
self.assertAllClose([[[[0., 0.], [100., 100.], [200., 200.]]],
[[[0., 0.], [150., 150.], [300., 300.]]]],
gt_keypoints)
# Predictions from the model are not scaled.
self.assertAllEqual(
[[[0., 0., 200., 200.]], [[0.0, 0.0, 75., 150.]]],
detection_boxes)
self.assertAllClose([[[[0., 0.], [100., 100.], [200., 200.]]],
[[[0., 0.], [75., 150.], [150., 300.]]]],
detection_keypoints)
if __name__ == '__main__':
tf.test.main()
|