File size: 8,002 Bytes
97b6013 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 |
syntax = "proto2";
package object_detection.protos;
// Message for configuring the localization loss, classification loss and hard
// example miner used for training object detection models. See core/losses.py
// for details
message Loss {
// Localization loss to use.
optional LocalizationLoss localization_loss = 1;
// Classification loss to use.
optional ClassificationLoss classification_loss = 2;
// If not left to default, applies hard example mining.
optional HardExampleMiner hard_example_miner = 3;
// Classification loss weight.
optional float classification_weight = 4 [default=1.0];
// Localization loss weight.
optional float localization_weight = 5 [default=1.0];
// If not left to default, applies random example sampling.
optional RandomExampleSampler random_example_sampler = 6;
// Equalization loss.
message EqualizationLoss {
// Weight equalization loss strength.
optional float weight = 1 [default=0.0];
// When computing equalization loss, ops that start with
// equalization_exclude_prefixes will be ignored. Only used when
// equalization_weight > 0.
repeated string exclude_prefixes = 2;
}
optional EqualizationLoss equalization_loss = 7;
enum ExpectedLossWeights {
NONE = 0;
// Use expected_classification_loss_by_expected_sampling
// from third_party/tensorflow_models/object_detection/utils/ops.py
EXPECTED_SAMPLING = 1;
// Use expected_classification_loss_by_reweighting_unmatched_anchors
// from third_party/tensorflow_models/object_detection/utils/ops.py
REWEIGHTING_UNMATCHED_ANCHORS = 2;
}
// Method to compute expected loss weights with respect to balanced
// positive/negative sampling scheme. If NONE, use explicit sampling.
// TODO(birdbrain): Move under ExpectedLossWeights.
optional ExpectedLossWeights expected_loss_weights = 18 [default = NONE];
// Minimum number of effective negative samples.
// Only applies if expected_loss_weights is not NONE.
// TODO(birdbrain): Move under ExpectedLossWeights.
optional float min_num_negative_samples = 19 [default=0];
// Desired number of effective negative samples per positive sample.
// Only applies if expected_loss_weights is not NONE.
// TODO(birdbrain): Move under ExpectedLossWeights.
optional float desired_negative_sampling_ratio = 20 [default=3];
}
// Configuration for bounding box localization loss function.
message LocalizationLoss {
oneof localization_loss {
WeightedL2LocalizationLoss weighted_l2 = 1;
WeightedSmoothL1LocalizationLoss weighted_smooth_l1 = 2;
WeightedIOULocalizationLoss weighted_iou = 3;
L1LocalizationLoss l1_localization_loss = 4;
}
}
// L2 location loss: 0.5 * ||weight * (a - b)|| ^ 2
message WeightedL2LocalizationLoss {
// DEPRECATED, do not use.
// Output loss per anchor.
optional bool anchorwise_output = 1 [default=false];
}
// SmoothL1 (Huber) location loss.
// The smooth L1_loss is defined elementwise as .5 x^2 if |x| <= delta and
// delta * (|x|-0.5*delta) otherwise, where x is the difference between
// predictions and target.
message WeightedSmoothL1LocalizationLoss {
// DEPRECATED, do not use.
// Output loss per anchor.
optional bool anchorwise_output = 1 [default=false];
// Delta value for huber loss.
optional float delta = 2 [default=1.0];
}
// Intersection over union location loss: 1 - IOU
message WeightedIOULocalizationLoss {
}
// L1 Localization Loss.
message L1LocalizationLoss {
}
// Configuration for class prediction loss function.
message ClassificationLoss {
oneof classification_loss {
WeightedSigmoidClassificationLoss weighted_sigmoid = 1;
WeightedSoftmaxClassificationLoss weighted_softmax = 2;
WeightedSoftmaxClassificationAgainstLogitsLoss weighted_logits_softmax = 5;
BootstrappedSigmoidClassificationLoss bootstrapped_sigmoid = 3;
SigmoidFocalClassificationLoss weighted_sigmoid_focal = 4;
PenaltyReducedLogisticFocalLoss penalty_reduced_logistic_focal_loss = 6;
}
}
// Classification loss using a sigmoid function over class predictions.
message WeightedSigmoidClassificationLoss {
// DEPRECATED, do not use.
// Output loss per anchor.
optional bool anchorwise_output = 1 [default=false];
}
// Sigmoid Focal cross entropy loss as described in
// https://arxiv.org/abs/1708.02002
message SigmoidFocalClassificationLoss {
// DEPRECATED, do not use.
optional bool anchorwise_output = 1 [default = false];
// modulating factor for the loss.
optional float gamma = 2 [default = 2.0];
// alpha weighting factor for the loss.
optional float alpha = 3;
}
// Classification loss using a softmax function over class predictions.
message WeightedSoftmaxClassificationLoss {
// DEPRECATED, do not use.
// Output loss per anchor.
optional bool anchorwise_output = 1 [default=false];
// Scale logit (input) value before calculating softmax classification loss.
// Typically used for softmax distillation.
optional float logit_scale = 2 [default = 1.0];
}
// Classification loss using a softmax function over class predictions and
// a softmax function over the groundtruth labels (assumed to be logits).
message WeightedSoftmaxClassificationAgainstLogitsLoss {
// DEPRECATED, do not use.
optional bool anchorwise_output = 1 [default = false];
// Scale and softmax groundtruth logits before calculating softmax
// classification loss. Typically used for softmax distillation with teacher
// annotations stored as logits.
optional float logit_scale = 2 [default = 1.0];
}
// Classification loss using a sigmoid function over the class prediction with
// the highest prediction score.
message BootstrappedSigmoidClassificationLoss {
// Interpolation weight between 0 and 1.
optional float alpha = 1;
// Whether hard boot strapping should be used or not. If true, will only use
// one class favored by model. Othewise, will use all predicted class
// probabilities.
optional bool hard_bootstrap = 2 [default=false];
// DEPRECATED, do not use.
// Output loss per anchor.
optional bool anchorwise_output = 3 [default=false];
}
// Pixelwise logistic focal loss with pixels near the target having a reduced
// penalty.
message PenaltyReducedLogisticFocalLoss {
// Focussing parameter of the focal loss.
optional float alpha = 1;
// Penalty reduction factor.
optional float beta = 2;
}
// Configuration for hard example miner.
message HardExampleMiner {
// Maximum number of hard examples to be selected per image (prior to
// enforcing max negative to positive ratio constraint). If set to 0,
// all examples obtained after NMS are considered.
optional int32 num_hard_examples = 1 [default=64];
// Minimum intersection over union for an example to be discarded during NMS.
optional float iou_threshold = 2 [default=0.7];
// Whether to use classification losses ('cls', default), localization losses
// ('loc') or both losses ('both'). In the case of 'both', cls_loss_weight and
// loc_loss_weight are used to compute weighted sum of the two losses.
enum LossType {
BOTH = 0;
CLASSIFICATION = 1;
LOCALIZATION = 2;
}
optional LossType loss_type = 3 [default=BOTH];
// Maximum number of negatives to retain for each positive anchor. If
// num_negatives_per_positive is 0 no prespecified negative:positive ratio is
// enforced.
optional int32 max_negatives_per_positive = 4 [default=0];
// Minimum number of negative anchors to sample for a given image. Setting
// this to a positive number samples negatives in an image without any
// positive anchors and thus not bias the model towards having at least one
// detection per image.
optional int32 min_negatives_per_image = 5 [default=0];
}
// Configuration for random example sampler.
message RandomExampleSampler {
// The desired fraction of positive samples in batch when applying random
// example sampling.
optional float positive_sample_fraction = 1 [default = 0.01];
}
|