File size: 65,476 Bytes
97b6013
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

"""AutoAugment util file."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import inspect
import math
import six
import tensorflow.compat.v1 as tf

# pylint: disable=g-import-not-at-top
try:
  from tensorflow.contrib import image as contrib_image
  from tensorflow.contrib import training as contrib_training
except ImportError:
  # TF 2.0 doesn't ship with contrib.
  pass
# pylint: enable=g-import-not-at-top

# This signifies the max integer that the controller RNN could predict for the
# augmentation scheme.
_MAX_LEVEL = 10.


# Represents an invalid bounding box that is used for checking for padding
# lists of bounding box coordinates for a few augmentation operations
_INVALID_BOX = [[-1.0, -1.0, -1.0, -1.0]]


def policy_v0():
  """Autoaugment policy that was used in AutoAugment Detection Paper."""
  # Each tuple is an augmentation operation of the form
  # (operation, probability, magnitude). Each element in policy is a
  # sub-policy that will be applied sequentially on the image.
  policy = [
      [('TranslateX_BBox', 0.6, 4), ('Equalize', 0.8, 10)],
      [('TranslateY_Only_BBoxes', 0.2, 2), ('Cutout', 0.8, 8)],
      [('Sharpness', 0.0, 8), ('ShearX_BBox', 0.4, 0)],
      [('ShearY_BBox', 1.0, 2), ('TranslateY_Only_BBoxes', 0.6, 6)],
      [('Rotate_BBox', 0.6, 10), ('Color', 1.0, 6)],
  ]
  return policy


def policy_v1():
  """Autoaugment policy that was used in AutoAugment Detection Paper."""
  # Each tuple is an augmentation operation of the form
  # (operation, probability, magnitude). Each element in policy is a
  # sub-policy that will be applied sequentially on the image.
  policy = [
      [('TranslateX_BBox', 0.6, 4), ('Equalize', 0.8, 10)],
      [('TranslateY_Only_BBoxes', 0.2, 2), ('Cutout', 0.8, 8)],
      [('Sharpness', 0.0, 8), ('ShearX_BBox', 0.4, 0)],
      [('ShearY_BBox', 1.0, 2), ('TranslateY_Only_BBoxes', 0.6, 6)],
      [('Rotate_BBox', 0.6, 10), ('Color', 1.0, 6)],
      [('Color', 0.0, 0), ('ShearX_Only_BBoxes', 0.8, 4)],
      [('ShearY_Only_BBoxes', 0.8, 2), ('Flip_Only_BBoxes', 0.0, 10)],
      [('Equalize', 0.6, 10), ('TranslateX_BBox', 0.2, 2)],
      [('Color', 1.0, 10), ('TranslateY_Only_BBoxes', 0.4, 6)],
      [('Rotate_BBox', 0.8, 10), ('Contrast', 0.0, 10)],
      [('Cutout', 0.2, 2), ('Brightness', 0.8, 10)],
      [('Color', 1.0, 6), ('Equalize', 1.0, 2)],
      [('Cutout_Only_BBoxes', 0.4, 6), ('TranslateY_Only_BBoxes', 0.8, 2)],
      [('Color', 0.2, 8), ('Rotate_BBox', 0.8, 10)],
      [('Sharpness', 0.4, 4), ('TranslateY_Only_BBoxes', 0.0, 4)],
      [('Sharpness', 1.0, 4), ('SolarizeAdd', 0.4, 4)],
      [('Rotate_BBox', 1.0, 8), ('Sharpness', 0.2, 8)],
      [('ShearY_BBox', 0.6, 10), ('Equalize_Only_BBoxes', 0.6, 8)],
      [('ShearX_BBox', 0.2, 6), ('TranslateY_Only_BBoxes', 0.2, 10)],
      [('SolarizeAdd', 0.6, 8), ('Brightness', 0.8, 10)],
  ]
  return policy


def policy_vtest():
  """Autoaugment test policy for debugging."""
  # Each tuple is an augmentation operation of the form
  # (operation, probability, magnitude). Each element in policy is a
  # sub-policy that will be applied sequentially on the image.
  policy = [
      [('TranslateX_BBox', 1.0, 4), ('Equalize', 1.0, 10)],
  ]
  return policy


def policy_v2():
  """Additional policy that performs well on object detection."""
  # Each tuple is an augmentation operation of the form
  # (operation, probability, magnitude). Each element in policy is a
  # sub-policy that will be applied sequentially on the image.
  policy = [
      [('Color', 0.0, 6), ('Cutout', 0.6, 8), ('Sharpness', 0.4, 8)],
      [('Rotate_BBox', 0.4, 8), ('Sharpness', 0.4, 2),
       ('Rotate_BBox', 0.8, 10)],
      [('TranslateY_BBox', 1.0, 8), ('AutoContrast', 0.8, 2)],
      [('AutoContrast', 0.4, 6), ('ShearX_BBox', 0.8, 8),
       ('Brightness', 0.0, 10)],
      [('SolarizeAdd', 0.2, 6), ('Contrast', 0.0, 10),
       ('AutoContrast', 0.6, 0)],
      [('Cutout', 0.2, 0), ('Solarize', 0.8, 8), ('Color', 1.0, 4)],
      [('TranslateY_BBox', 0.0, 4), ('Equalize', 0.6, 8),
       ('Solarize', 0.0, 10)],
      [('TranslateY_BBox', 0.2, 2), ('ShearY_BBox', 0.8, 8),
       ('Rotate_BBox', 0.8, 8)],
      [('Cutout', 0.8, 8), ('Brightness', 0.8, 8), ('Cutout', 0.2, 2)],
      [('Color', 0.8, 4), ('TranslateY_BBox', 1.0, 6), ('Rotate_BBox', 0.6, 6)],
      [('Rotate_BBox', 0.6, 10), ('BBox_Cutout', 1.0, 4), ('Cutout', 0.2, 8)],
      [('Rotate_BBox', 0.0, 0), ('Equalize', 0.6, 6), ('ShearY_BBox', 0.6, 8)],
      [('Brightness', 0.8, 8), ('AutoContrast', 0.4, 2),
       ('Brightness', 0.2, 2)],
      [('TranslateY_BBox', 0.4, 8), ('Solarize', 0.4, 6),
       ('SolarizeAdd', 0.2, 10)],
      [('Contrast', 1.0, 10), ('SolarizeAdd', 0.2, 8), ('Equalize', 0.2, 4)],
  ]
  return policy


def policy_v3():
  """"Additional policy that performs well on object detection."""
  # Each tuple is an augmentation operation of the form
  # (operation, probability, magnitude). Each element in policy is a
  # sub-policy that will be applied sequentially on the image.
  policy = [
      [('Posterize', 0.8, 2), ('TranslateX_BBox', 1.0, 8)],
      [('BBox_Cutout', 0.2, 10), ('Sharpness', 1.0, 8)],
      [('Rotate_BBox', 0.6, 8), ('Rotate_BBox', 0.8, 10)],
      [('Equalize', 0.8, 10), ('AutoContrast', 0.2, 10)],
      [('SolarizeAdd', 0.2, 2), ('TranslateY_BBox', 0.2, 8)],
      [('Sharpness', 0.0, 2), ('Color', 0.4, 8)],
      [('Equalize', 1.0, 8), ('TranslateY_BBox', 1.0, 8)],
      [('Posterize', 0.6, 2), ('Rotate_BBox', 0.0, 10)],
      [('AutoContrast', 0.6, 0), ('Rotate_BBox', 1.0, 6)],
      [('Equalize', 0.0, 4), ('Cutout', 0.8, 10)],
      [('Brightness', 1.0, 2), ('TranslateY_BBox', 1.0, 6)],
      [('Contrast', 0.0, 2), ('ShearY_BBox', 0.8, 0)],
      [('AutoContrast', 0.8, 10), ('Contrast', 0.2, 10)],
      [('Rotate_BBox', 1.0, 10), ('Cutout', 1.0, 10)],
      [('SolarizeAdd', 0.8, 6), ('Equalize', 0.8, 8)],
  ]
  return policy


def blend(image1, image2, factor):
  """Blend image1 and image2 using 'factor'.

  Factor can be above 0.0.  A value of 0.0 means only image1 is used.
  A value of 1.0 means only image2 is used.  A value between 0.0 and
  1.0 means we linearly interpolate the pixel values between the two
  images.  A value greater than 1.0 "extrapolates" the difference
  between the two pixel values, and we clip the results to values
  between 0 and 255.

  Args:
    image1: An image Tensor of type uint8.
    image2: An image Tensor of type uint8.
    factor: A floating point value above 0.0.

  Returns:
    A blended image Tensor of type uint8.
  """
  if factor == 0.0:
    return tf.convert_to_tensor(image1)
  if factor == 1.0:
    return tf.convert_to_tensor(image2)

  image1 = tf.to_float(image1)
  image2 = tf.to_float(image2)

  difference = image2 - image1
  scaled = factor * difference

  # Do addition in float.
  temp = tf.to_float(image1) + scaled

  # Interpolate
  if factor > 0.0 and factor < 1.0:
    # Interpolation means we always stay within 0 and 255.
    return tf.cast(temp, tf.uint8)

  # Extrapolate:
  #
  # We need to clip and then cast.
  return tf.cast(tf.clip_by_value(temp, 0.0, 255.0), tf.uint8)


def cutout(image, pad_size, replace=0):
  """Apply cutout (https://arxiv.org/abs/1708.04552) to image.

  This operation applies a (2*pad_size x 2*pad_size) mask of zeros to
  a random location within `img`. The pixel values filled in will be of the
  value `replace`. The located where the mask will be applied is randomly
  chosen uniformly over the whole image.

  Args:
    image: An image Tensor of type uint8.
    pad_size: Specifies how big the zero mask that will be generated is that
      is applied to the image. The mask will be of size
      (2*pad_size x 2*pad_size).
    replace: What pixel value to fill in the image in the area that has
      the cutout mask applied to it.

  Returns:
    An image Tensor that is of type uint8.
  """
  image_height = tf.shape(image)[0]
  image_width = tf.shape(image)[1]

  # Sample the center location in the image where the zero mask will be applied.
  cutout_center_height = tf.random_uniform(
      shape=[], minval=0, maxval=image_height,
      dtype=tf.int32)

  cutout_center_width = tf.random_uniform(
      shape=[], minval=0, maxval=image_width,
      dtype=tf.int32)

  lower_pad = tf.maximum(0, cutout_center_height - pad_size)
  upper_pad = tf.maximum(0, image_height - cutout_center_height - pad_size)
  left_pad = tf.maximum(0, cutout_center_width - pad_size)
  right_pad = tf.maximum(0, image_width - cutout_center_width - pad_size)

  cutout_shape = [image_height - (lower_pad + upper_pad),
                  image_width - (left_pad + right_pad)]
  padding_dims = [[lower_pad, upper_pad], [left_pad, right_pad]]
  mask = tf.pad(
      tf.zeros(cutout_shape, dtype=image.dtype),
      padding_dims, constant_values=1)
  mask = tf.expand_dims(mask, -1)
  mask = tf.tile(mask, [1, 1, 3])
  image = tf.where(
      tf.equal(mask, 0),
      tf.ones_like(image, dtype=image.dtype) * replace,
      image)
  return image


def solarize(image, threshold=128):
  # For each pixel in the image, select the pixel
  # if the value is less than the threshold.
  # Otherwise, subtract 255 from the pixel.
  return tf.where(image < threshold, image, 255 - image)


def solarize_add(image, addition=0, threshold=128):
  # For each pixel in the image less than threshold
  # we add 'addition' amount to it and then clip the
  # pixel value to be between 0 and 255. The value
  # of 'addition' is between -128 and 128.
  added_image = tf.cast(image, tf.int64) + addition
  added_image = tf.cast(tf.clip_by_value(added_image, 0, 255), tf.uint8)
  return tf.where(image < threshold, added_image, image)


def color(image, factor):
  """Equivalent of PIL Color."""
  degenerate = tf.image.grayscale_to_rgb(tf.image.rgb_to_grayscale(image))
  return blend(degenerate, image, factor)


def contrast(image, factor):
  """Equivalent of PIL Contrast."""
  degenerate = tf.image.rgb_to_grayscale(image)
  # Cast before calling tf.histogram.
  degenerate = tf.cast(degenerate, tf.int32)

  # Compute the grayscale histogram, then compute the mean pixel value,
  # and create a constant image size of that value.  Use that as the
  # blending degenerate target of the original image.
  hist = tf.histogram_fixed_width(degenerate, [0, 255], nbins=256)
  mean = tf.reduce_sum(tf.cast(hist, tf.float32)) / 256.0
  degenerate = tf.ones_like(degenerate, dtype=tf.float32) * mean
  degenerate = tf.clip_by_value(degenerate, 0.0, 255.0)
  degenerate = tf.image.grayscale_to_rgb(tf.cast(degenerate, tf.uint8))
  return blend(degenerate, image, factor)


def brightness(image, factor):
  """Equivalent of PIL Brightness."""
  degenerate = tf.zeros_like(image)
  return blend(degenerate, image, factor)


def posterize(image, bits):
  """Equivalent of PIL Posterize."""
  shift = 8 - bits
  return tf.bitwise.left_shift(tf.bitwise.right_shift(image, shift), shift)


def rotate(image, degrees, replace):
  """Rotates the image by degrees either clockwise or counterclockwise.

  Args:
    image: An image Tensor of type uint8.
    degrees: Float, a scalar angle in degrees to rotate all images by. If
      degrees is positive the image will be rotated clockwise otherwise it will
      be rotated counterclockwise.
    replace: A one or three value 1D tensor to fill empty pixels caused by
      the rotate operation.

  Returns:
    The rotated version of image.
  """
  # Convert from degrees to radians.
  degrees_to_radians = math.pi / 180.0
  radians = degrees * degrees_to_radians

  # In practice, we should randomize the rotation degrees by flipping
  # it negatively half the time, but that's done on 'degrees' outside
  # of the function.
  image = contrib_image.rotate(wrap(image), radians)
  return unwrap(image, replace)


def random_shift_bbox(image, bbox, pixel_scaling, replace,
                      new_min_bbox_coords=None):
  """Move the bbox and the image content to a slightly new random location.

  Args:
    image: 3D uint8 Tensor.
    bbox: 1D Tensor that has 4 elements (min_y, min_x, max_y, max_x)
      of type float that represents the normalized coordinates between 0 and 1.
      The potential values for the new min corner of the bbox will be between
      [old_min - pixel_scaling * bbox_height/2,
       old_min - pixel_scaling * bbox_height/2].
    pixel_scaling: A float between 0 and 1 that specifies the pixel range
      that the new bbox location will be sampled from.
    replace: A one or three value 1D tensor to fill empty pixels.
    new_min_bbox_coords: If not None, then this is a tuple that specifies the
      (min_y, min_x) coordinates of the new bbox. Normally this is randomly
      specified, but this allows it to be manually set. The coordinates are
      the absolute coordinates between 0 and image height/width and are int32.

  Returns:
    The new image that will have the shifted bbox location in it along with
    the new bbox that contains the new coordinates.
  """
  # Obtains image height and width and create helper clip functions.
  image_height = tf.to_float(tf.shape(image)[0])
  image_width = tf.to_float(tf.shape(image)[1])
  def clip_y(val):
    return tf.clip_by_value(val, 0, tf.to_int32(image_height) - 1)
  def clip_x(val):
    return tf.clip_by_value(val, 0, tf.to_int32(image_width) - 1)

  # Convert bbox to pixel coordinates.
  min_y = tf.to_int32(image_height * bbox[0])
  min_x = tf.to_int32(image_width * bbox[1])
  max_y = clip_y(tf.to_int32(image_height * bbox[2]))
  max_x = clip_x(tf.to_int32(image_width * bbox[3]))
  bbox_height, bbox_width = (max_y - min_y + 1, max_x - min_x + 1)
  image_height = tf.to_int32(image_height)
  image_width = tf.to_int32(image_width)

  # Select the new min/max bbox ranges that are used for sampling the
  # new min x/y coordinates of the shifted bbox.
  minval_y = clip_y(
      min_y - tf.to_int32(pixel_scaling * tf.to_float(bbox_height) / 2.0))
  maxval_y = clip_y(
      min_y + tf.to_int32(pixel_scaling * tf.to_float(bbox_height) / 2.0))
  minval_x = clip_x(
      min_x - tf.to_int32(pixel_scaling * tf.to_float(bbox_width) / 2.0))
  maxval_x = clip_x(
      min_x + tf.to_int32(pixel_scaling * tf.to_float(bbox_width) / 2.0))

  # Sample and calculate the new unclipped min/max coordinates of the new bbox.
  if new_min_bbox_coords is None:
    unclipped_new_min_y = tf.random_uniform(
        shape=[], minval=minval_y, maxval=maxval_y,
        dtype=tf.int32)
    unclipped_new_min_x = tf.random_uniform(
        shape=[], minval=minval_x, maxval=maxval_x,
        dtype=tf.int32)
  else:
    unclipped_new_min_y, unclipped_new_min_x = (
        clip_y(new_min_bbox_coords[0]), clip_x(new_min_bbox_coords[1]))
  unclipped_new_max_y = unclipped_new_min_y + bbox_height - 1
  unclipped_new_max_x = unclipped_new_min_x + bbox_width - 1

  # Determine if any of the new bbox was shifted outside the current image.
  # This is used for determining if any of the original bbox content should be
  # discarded.
  new_min_y, new_min_x, new_max_y, new_max_x = (
      clip_y(unclipped_new_min_y), clip_x(unclipped_new_min_x),
      clip_y(unclipped_new_max_y), clip_x(unclipped_new_max_x))
  shifted_min_y = (new_min_y - unclipped_new_min_y) + min_y
  shifted_max_y = max_y - (unclipped_new_max_y - new_max_y)
  shifted_min_x = (new_min_x - unclipped_new_min_x) + min_x
  shifted_max_x = max_x - (unclipped_new_max_x - new_max_x)

  # Create the new bbox tensor by converting pixel integer values to floats.
  new_bbox = tf.stack([
      tf.to_float(new_min_y) / tf.to_float(image_height),
      tf.to_float(new_min_x) / tf.to_float(image_width),
      tf.to_float(new_max_y) / tf.to_float(image_height),
      tf.to_float(new_max_x) / tf.to_float(image_width)])

  # Copy the contents in the bbox and fill the old bbox location
  # with gray (128).
  bbox_content = image[shifted_min_y:shifted_max_y + 1,
                       shifted_min_x:shifted_max_x + 1, :]

  def mask_and_add_image(
      min_y_, min_x_, max_y_, max_x_, mask, content_tensor, image_):
    """Applies mask to bbox region in image then adds content_tensor to it."""
    mask = tf.pad(mask,
                  [[min_y_, (image_height - 1) - max_y_],
                   [min_x_, (image_width - 1) - max_x_],
                   [0, 0]], constant_values=1)
    content_tensor = tf.pad(content_tensor,
                            [[min_y_, (image_height - 1) - max_y_],
                             [min_x_, (image_width - 1) - max_x_],
                             [0, 0]], constant_values=0)
    return image_ * mask + content_tensor

  # Zero out original bbox location.
  mask = tf.zeros_like(image)[min_y:max_y+1, min_x:max_x+1, :]
  grey_tensor = tf.zeros_like(mask) + replace[0]
  image = mask_and_add_image(min_y, min_x, max_y, max_x, mask,
                             grey_tensor, image)

  # Fill in bbox content to new bbox location.
  mask = tf.zeros_like(bbox_content)
  image = mask_and_add_image(new_min_y, new_min_x, new_max_y, new_max_x, mask,
                             bbox_content, image)

  return image, new_bbox


def _clip_bbox(min_y, min_x, max_y, max_x):
  """Clip bounding box coordinates between 0 and 1.

  Args:
    min_y: Normalized bbox coordinate of type float between 0 and 1.
    min_x: Normalized bbox coordinate of type float between 0 and 1.
    max_y: Normalized bbox coordinate of type float between 0 and 1.
    max_x: Normalized bbox coordinate of type float between 0 and 1.

  Returns:
    Clipped coordinate values between 0 and 1.
  """
  min_y = tf.clip_by_value(min_y, 0.0, 1.0)
  min_x = tf.clip_by_value(min_x, 0.0, 1.0)
  max_y = tf.clip_by_value(max_y, 0.0, 1.0)
  max_x = tf.clip_by_value(max_x, 0.0, 1.0)
  return min_y, min_x, max_y, max_x


def _check_bbox_area(min_y, min_x, max_y, max_x, delta=0.05):
  """Adjusts bbox coordinates to make sure the area is > 0.

  Args:
    min_y: Normalized bbox coordinate of type float between 0 and 1.
    min_x: Normalized bbox coordinate of type float between 0 and 1.
    max_y: Normalized bbox coordinate of type float between 0 and 1.
    max_x: Normalized bbox coordinate of type float between 0 and 1.
    delta: Float, this is used to create a gap of size 2 * delta between
      bbox min/max coordinates that are the same on the boundary.
      This prevents the bbox from having an area of zero.

  Returns:
    Tuple of new bbox coordinates between 0 and 1 that will now have a
    guaranteed area > 0.
  """
  height = max_y - min_y
  width = max_x - min_x
  def _adjust_bbox_boundaries(min_coord, max_coord):
    # Make sure max is never 0 and min is never 1.
    max_coord = tf.maximum(max_coord, 0.0 + delta)
    min_coord = tf.minimum(min_coord, 1.0 - delta)
    return min_coord, max_coord
  min_y, max_y = tf.cond(tf.equal(height, 0.0),
                         lambda: _adjust_bbox_boundaries(min_y, max_y),
                         lambda: (min_y, max_y))
  min_x, max_x = tf.cond(tf.equal(width, 0.0),
                         lambda: _adjust_bbox_boundaries(min_x, max_x),
                         lambda: (min_x, max_x))
  return min_y, min_x, max_y, max_x


def _scale_bbox_only_op_probability(prob):
  """Reduce the probability of the bbox-only operation.

  Probability is reduced so that we do not distort the content of too many
  bounding boxes that are close to each other. The value of 3.0 was a chosen
  hyper parameter when designing the autoaugment algorithm that we found
  empirically to work well.

  Args:
    prob: Float that is the probability of applying the bbox-only operation.

  Returns:
    Reduced probability.
  """
  return prob / 3.0


def _apply_bbox_augmentation(image, bbox, augmentation_func, *args):
  """Applies augmentation_func to the subsection of image indicated by bbox.

  Args:
    image: 3D uint8 Tensor.
    bbox: 1D Tensor that has 4 elements (min_y, min_x, max_y, max_x)
      of type float that represents the normalized coordinates between 0 and 1.
    augmentation_func: Augmentation function that will be applied to the
      subsection of image.
    *args: Additional parameters that will be passed into augmentation_func
      when it is called.

  Returns:
    A modified version of image, where the bbox location in the image will
    have `ugmentation_func applied to it.
  """
  image_height = tf.to_float(tf.shape(image)[0])
  image_width = tf.to_float(tf.shape(image)[1])
  min_y = tf.to_int32(image_height * bbox[0])
  min_x = tf.to_int32(image_width * bbox[1])
  max_y = tf.to_int32(image_height * bbox[2])
  max_x = tf.to_int32(image_width * bbox[3])
  image_height = tf.to_int32(image_height)
  image_width = tf.to_int32(image_width)

  # Clip to be sure the max values do not fall out of range.
  max_y = tf.minimum(max_y, image_height - 1)
  max_x = tf.minimum(max_x, image_width - 1)

  # Get the sub-tensor that is the image within the bounding box region.
  bbox_content = image[min_y:max_y + 1, min_x:max_x + 1, :]

  # Apply the augmentation function to the bbox portion of the image.
  augmented_bbox_content = augmentation_func(bbox_content, *args)

  # Pad the augmented_bbox_content and the mask to match the shape of original
  # image.
  augmented_bbox_content = tf.pad(augmented_bbox_content,
                                  [[min_y, (image_height - 1) - max_y],
                                   [min_x, (image_width - 1) - max_x],
                                   [0, 0]])

  # Create a mask that will be used to zero out a part of the original image.
  mask_tensor = tf.zeros_like(bbox_content)

  mask_tensor = tf.pad(mask_tensor,
                       [[min_y, (image_height - 1) - max_y],
                        [min_x, (image_width - 1) - max_x],
                        [0, 0]],
                       constant_values=1)
  # Replace the old bbox content with the new augmented content.
  image = image * mask_tensor + augmented_bbox_content
  return image


def _concat_bbox(bbox, bboxes):
  """Helper function that concates bbox to bboxes along the first dimension."""

  # Note if all elements in bboxes are -1 (_INVALID_BOX), then this means
  # we discard bboxes and start the bboxes Tensor with the current bbox.
  bboxes_sum_check = tf.reduce_sum(bboxes)
  bbox = tf.expand_dims(bbox, 0)
  # This check will be true when it is an _INVALID_BOX
  bboxes = tf.cond(tf.equal(bboxes_sum_check, -4.0),
                   lambda: bbox,
                   lambda: tf.concat([bboxes, bbox], 0))
  return bboxes


def _apply_bbox_augmentation_wrapper(image, bbox, new_bboxes, prob,
                                     augmentation_func, func_changes_bbox,
                                     *args):
  """Applies _apply_bbox_augmentation with probability prob.

  Args:
    image: 3D uint8 Tensor.
    bbox: 1D Tensor that has 4 elements (min_y, min_x, max_y, max_x)
      of type float that represents the normalized coordinates between 0 and 1.
    new_bboxes: 2D Tensor that is a list of the bboxes in the image after they
      have been altered by aug_func. These will only be changed when
      func_changes_bbox is set to true. Each bbox has 4 elements
      (min_y, min_x, max_y, max_x) of type float that are the normalized
      bbox coordinates between 0 and 1.
    prob: Float that is the probability of applying _apply_bbox_augmentation.
    augmentation_func: Augmentation function that will be applied to the
      subsection of image.
    func_changes_bbox: Boolean. Does augmentation_func return bbox in addition
      to image.
    *args: Additional parameters that will be passed into augmentation_func
      when it is called.

  Returns:
    A tuple. Fist element is a modified version of image, where the bbox
    location in the image will have augmentation_func applied to it if it is
    chosen to be called with probability `prob`. The second element is a
    Tensor of Tensors of length 4 that will contain the altered bbox after
    applying augmentation_func.
  """
  should_apply_op = tf.cast(
      tf.floor(tf.random_uniform([], dtype=tf.float32) + prob), tf.bool)
  if func_changes_bbox:
    augmented_image, bbox = tf.cond(
        should_apply_op,
        lambda: augmentation_func(image, bbox, *args),
        lambda: (image, bbox))
  else:
    augmented_image = tf.cond(
        should_apply_op,
        lambda: _apply_bbox_augmentation(image, bbox, augmentation_func, *args),
        lambda: image)
  new_bboxes = _concat_bbox(bbox, new_bboxes)
  return augmented_image, new_bboxes


def _apply_multi_bbox_augmentation(image, bboxes, prob, aug_func,
                                   func_changes_bbox, *args):
  """Applies aug_func to the image for each bbox in bboxes.

  Args:
    image: 3D uint8 Tensor.
    bboxes: 2D Tensor that is a list of the bboxes in the image. Each bbox
      has 4 elements (min_y, min_x, max_y, max_x) of type float.
    prob: Float that is the probability of applying aug_func to a specific
      bounding box within the image.
    aug_func: Augmentation function that will be applied to the
      subsections of image indicated by the bbox values in bboxes.
    func_changes_bbox: Boolean. Does augmentation_func return bbox in addition
      to image.
    *args: Additional parameters that will be passed into augmentation_func
      when it is called.

  Returns:
    A modified version of image, where each bbox location in the image will
    have augmentation_func applied to it if it is chosen to be called with
    probability prob independently across all bboxes. Also the final
    bboxes are returned that will be unchanged if func_changes_bbox is set to
    false and if true, the new altered ones will be returned.
  """
  # Will keep track of the new altered bboxes after aug_func is repeatedly
  # applied. The -1 values are a dummy value and this first Tensor will be
  # removed upon appending the first real bbox.
  new_bboxes = tf.constant(_INVALID_BOX)

  # If the bboxes are empty, then just give it _INVALID_BOX. The result
  # will be thrown away.
  bboxes = tf.cond(tf.equal(tf.size(bboxes), 0),
                   lambda: tf.constant(_INVALID_BOX),
                   lambda: bboxes)

  bboxes = tf.ensure_shape(bboxes, (None, 4))

  # pylint:disable=g-long-lambda
  # pylint:disable=line-too-long
  wrapped_aug_func = lambda _image, bbox, _new_bboxes: _apply_bbox_augmentation_wrapper(
      _image, bbox, _new_bboxes, prob, aug_func, func_changes_bbox, *args)
  # pylint:enable=g-long-lambda
  # pylint:enable=line-too-long

  # Setup the while_loop.
  num_bboxes = tf.shape(bboxes)[0]  # We loop until we go over all bboxes.
  idx = tf.constant(0)  # Counter for the while loop.

  # Conditional function when to end the loop once we go over all bboxes
  # images_and_bboxes contain (_image, _new_bboxes)
  cond = lambda _idx, _images_and_bboxes: tf.less(_idx, num_bboxes)

  # Shuffle the bboxes so that the augmentation order is not deterministic if
  # we are not changing the bboxes with aug_func.
  if not func_changes_bbox:
    loop_bboxes = tf.random.shuffle(bboxes)
  else:
    loop_bboxes = bboxes

  # Main function of while_loop where we repeatedly apply augmentation on the
  # bboxes in the image.
  # pylint:disable=g-long-lambda
  body = lambda _idx, _images_and_bboxes: [
      _idx + 1, wrapped_aug_func(_images_and_bboxes[0],
                                 loop_bboxes[_idx],
                                 _images_and_bboxes[1])]
  # pylint:enable=g-long-lambda

  _, (image, new_bboxes) = tf.while_loop(
      cond, body, [idx, (image, new_bboxes)],
      shape_invariants=[idx.get_shape(),
                        (image.get_shape(), tf.TensorShape([None, 4]))])

  # Either return the altered bboxes or the original ones depending on if
  # we altered them in anyway.
  if func_changes_bbox:
    final_bboxes = new_bboxes
  else:
    final_bboxes = bboxes
  return image, final_bboxes


def _apply_multi_bbox_augmentation_wrapper(image, bboxes, prob, aug_func,
                                           func_changes_bbox, *args):
  """Checks to be sure num bboxes > 0 before calling inner function."""
  num_bboxes = tf.shape(bboxes)[0]
  image, bboxes = tf.cond(
      tf.equal(num_bboxes, 0),
      lambda: (image, bboxes),
      # pylint:disable=g-long-lambda
      lambda: _apply_multi_bbox_augmentation(
          image, bboxes, prob, aug_func, func_changes_bbox, *args))
  # pylint:enable=g-long-lambda
  return image, bboxes


def rotate_only_bboxes(image, bboxes, prob, degrees, replace):
  """Apply rotate to each bbox in the image with probability prob."""
  func_changes_bbox = False
  prob = _scale_bbox_only_op_probability(prob)
  return _apply_multi_bbox_augmentation_wrapper(
      image, bboxes, prob, rotate, func_changes_bbox, degrees, replace)


def shear_x_only_bboxes(image, bboxes, prob, level, replace):
  """Apply shear_x to each bbox in the image with probability prob."""
  func_changes_bbox = False
  prob = _scale_bbox_only_op_probability(prob)
  return _apply_multi_bbox_augmentation_wrapper(
      image, bboxes, prob, shear_x, func_changes_bbox, level, replace)


def shear_y_only_bboxes(image, bboxes, prob, level, replace):
  """Apply shear_y to each bbox in the image with probability prob."""
  func_changes_bbox = False
  prob = _scale_bbox_only_op_probability(prob)
  return _apply_multi_bbox_augmentation_wrapper(
      image, bboxes, prob, shear_y, func_changes_bbox, level, replace)


def translate_x_only_bboxes(image, bboxes, prob, pixels, replace):
  """Apply translate_x to each bbox in the image with probability prob."""
  func_changes_bbox = False
  prob = _scale_bbox_only_op_probability(prob)
  return _apply_multi_bbox_augmentation_wrapper(
      image, bboxes, prob, translate_x, func_changes_bbox, pixels, replace)


def translate_y_only_bboxes(image, bboxes, prob, pixels, replace):
  """Apply translate_y to each bbox in the image with probability prob."""
  func_changes_bbox = False
  prob = _scale_bbox_only_op_probability(prob)
  return _apply_multi_bbox_augmentation_wrapper(
      image, bboxes, prob, translate_y, func_changes_bbox, pixels, replace)


def flip_only_bboxes(image, bboxes, prob):
  """Apply flip_lr to each bbox in the image with probability prob."""
  func_changes_bbox = False
  prob = _scale_bbox_only_op_probability(prob)
  return _apply_multi_bbox_augmentation_wrapper(
      image, bboxes, prob, tf.image.flip_left_right, func_changes_bbox)


def solarize_only_bboxes(image, bboxes, prob, threshold):
  """Apply solarize to each bbox in the image with probability prob."""
  func_changes_bbox = False
  prob = _scale_bbox_only_op_probability(prob)
  return _apply_multi_bbox_augmentation_wrapper(
      image, bboxes, prob, solarize, func_changes_bbox, threshold)


def equalize_only_bboxes(image, bboxes, prob):
  """Apply equalize to each bbox in the image with probability prob."""
  func_changes_bbox = False
  prob = _scale_bbox_only_op_probability(prob)
  return _apply_multi_bbox_augmentation_wrapper(
      image, bboxes, prob, equalize, func_changes_bbox)


def cutout_only_bboxes(image, bboxes, prob, pad_size, replace):
  """Apply cutout to each bbox in the image with probability prob."""
  func_changes_bbox = False
  prob = _scale_bbox_only_op_probability(prob)
  return _apply_multi_bbox_augmentation_wrapper(
      image, bboxes, prob, cutout, func_changes_bbox, pad_size, replace)


def _rotate_bbox(bbox, image_height, image_width, degrees):
  """Rotates the bbox coordinated by degrees.

  Args:
    bbox: 1D Tensor that has 4 elements (min_y, min_x, max_y, max_x)
      of type float that represents the normalized coordinates between 0 and 1.
    image_height: Int, height of the image.
    image_width: Int, height of the image.
    degrees: Float, a scalar angle in degrees to rotate all images by. If
      degrees is positive the image will be rotated clockwise otherwise it will
      be rotated counterclockwise.

  Returns:
    A tensor of the same shape as bbox, but now with the rotated coordinates.
  """
  image_height, image_width = (
      tf.to_float(image_height), tf.to_float(image_width))

  # Convert from degrees to radians.
  degrees_to_radians = math.pi / 180.0
  radians = degrees * degrees_to_radians

  # Translate the bbox to the center of the image and turn the normalized 0-1
  # coordinates to absolute pixel locations.
  # Y coordinates are made negative as the y axis of images goes down with
  # increasing pixel values, so we negate to make sure x axis and y axis points
  # are in the traditionally positive direction.
  min_y = -tf.to_int32(image_height * (bbox[0] - 0.5))
  min_x = tf.to_int32(image_width * (bbox[1] - 0.5))
  max_y = -tf.to_int32(image_height * (bbox[2] - 0.5))
  max_x = tf.to_int32(image_width * (bbox[3] - 0.5))
  coordinates = tf.stack(
      [[min_y, min_x], [min_y, max_x], [max_y, min_x], [max_y, max_x]])
  coordinates = tf.cast(coordinates, tf.float32)
  # Rotate the coordinates according to the rotation matrix clockwise if
  # radians is positive, else negative
  rotation_matrix = tf.stack(
      [[tf.cos(radians), tf.sin(radians)],
       [-tf.sin(radians), tf.cos(radians)]])
  new_coords = tf.cast(
      tf.matmul(rotation_matrix, tf.transpose(coordinates)), tf.int32)
  # Find min/max values and convert them back to normalized 0-1 floats.
  min_y = -(tf.to_float(tf.reduce_max(new_coords[0, :])) / image_height - 0.5)
  min_x = tf.to_float(tf.reduce_min(new_coords[1, :])) / image_width + 0.5
  max_y = -(tf.to_float(tf.reduce_min(new_coords[0, :])) / image_height - 0.5)
  max_x = tf.to_float(tf.reduce_max(new_coords[1, :])) / image_width + 0.5

  # Clip the bboxes to be sure the fall between [0, 1].
  min_y, min_x, max_y, max_x = _clip_bbox(min_y, min_x, max_y, max_x)
  min_y, min_x, max_y, max_x = _check_bbox_area(min_y, min_x, max_y, max_x)
  return tf.stack([min_y, min_x, max_y, max_x])


def rotate_with_bboxes(image, bboxes, degrees, replace):
  """Equivalent of PIL Rotate that rotates the image and bbox.

  Args:
    image: 3D uint8 Tensor.
    bboxes: 2D Tensor that is a list of the bboxes in the image. Each bbox
      has 4 elements (min_y, min_x, max_y, max_x) of type float.
    degrees: Float, a scalar angle in degrees to rotate all images by. If
      degrees is positive the image will be rotated clockwise otherwise it will
      be rotated counterclockwise.
    replace: A one or three value 1D tensor to fill empty pixels.

  Returns:
    A tuple containing a 3D uint8 Tensor that will be the result of rotating
    image by degrees. The second element of the tuple is bboxes, where now
    the coordinates will be shifted to reflect the rotated image.
  """
  # Rotate the image.
  image = rotate(image, degrees, replace)

  # Convert bbox coordinates to pixel values.
  image_height = tf.shape(image)[0]
  image_width = tf.shape(image)[1]
  # pylint:disable=g-long-lambda
  wrapped_rotate_bbox = lambda bbox: _rotate_bbox(
      bbox, image_height, image_width, degrees)
  # pylint:enable=g-long-lambda
  bboxes = tf.map_fn(wrapped_rotate_bbox, bboxes)
  return image, bboxes


def translate_x(image, pixels, replace):
  """Equivalent of PIL Translate in X dimension."""
  image = contrib_image.translate(wrap(image), [-pixels, 0])
  return unwrap(image, replace)


def translate_y(image, pixels, replace):
  """Equivalent of PIL Translate in Y dimension."""
  image = contrib_image.translate(wrap(image), [0, -pixels])
  return unwrap(image, replace)


def _shift_bbox(bbox, image_height, image_width, pixels, shift_horizontal):
  """Shifts the bbox coordinates by pixels.

  Args:
    bbox: 1D Tensor that has 4 elements (min_y, min_x, max_y, max_x)
      of type float that represents the normalized coordinates between 0 and 1.
    image_height: Int, height of the image.
    image_width: Int, width of the image.
    pixels: An int. How many pixels to shift the bbox.
    shift_horizontal: Boolean. If true then shift in X dimension else shift in
      Y dimension.

  Returns:
    A tensor of the same shape as bbox, but now with the shifted coordinates.
  """
  pixels = tf.to_int32(pixels)
  # Convert bbox to integer pixel locations.
  min_y = tf.to_int32(tf.to_float(image_height) * bbox[0])
  min_x = tf.to_int32(tf.to_float(image_width) * bbox[1])
  max_y = tf.to_int32(tf.to_float(image_height) * bbox[2])
  max_x = tf.to_int32(tf.to_float(image_width) * bbox[3])

  if shift_horizontal:
    min_x = tf.maximum(0, min_x - pixels)
    max_x = tf.minimum(image_width, max_x - pixels)
  else:
    min_y = tf.maximum(0, min_y - pixels)
    max_y = tf.minimum(image_height, max_y - pixels)

  # Convert bbox back to floats.
  min_y = tf.to_float(min_y) / tf.to_float(image_height)
  min_x = tf.to_float(min_x) / tf.to_float(image_width)
  max_y = tf.to_float(max_y) / tf.to_float(image_height)
  max_x = tf.to_float(max_x) / tf.to_float(image_width)

  # Clip the bboxes to be sure the fall between [0, 1].
  min_y, min_x, max_y, max_x = _clip_bbox(min_y, min_x, max_y, max_x)
  min_y, min_x, max_y, max_x = _check_bbox_area(min_y, min_x, max_y, max_x)
  return tf.stack([min_y, min_x, max_y, max_x])


def translate_bbox(image, bboxes, pixels, replace, shift_horizontal):
  """Equivalent of PIL Translate in X/Y dimension that shifts image and bbox.

  Args:
    image: 3D uint8 Tensor.
    bboxes: 2D Tensor that is a list of the bboxes in the image. Each bbox
      has 4 elements (min_y, min_x, max_y, max_x) of type float with values
      between [0, 1].
    pixels: An int. How many pixels to shift the image and bboxes
    replace: A one or three value 1D tensor to fill empty pixels.
    shift_horizontal: Boolean. If true then shift in X dimension else shift in
      Y dimension.

  Returns:
    A tuple containing a 3D uint8 Tensor that will be the result of translating
    image by pixels. The second element of the tuple is bboxes, where now
    the coordinates will be shifted to reflect the shifted image.
  """
  if shift_horizontal:
    image = translate_x(image, pixels, replace)
  else:
    image = translate_y(image, pixels, replace)

  # Convert bbox coordinates to pixel values.
  image_height = tf.shape(image)[0]
  image_width = tf.shape(image)[1]
  # pylint:disable=g-long-lambda
  wrapped_shift_bbox = lambda bbox: _shift_bbox(
      bbox, image_height, image_width, pixels, shift_horizontal)
  # pylint:enable=g-long-lambda
  bboxes = tf.map_fn(wrapped_shift_bbox, bboxes)
  return image, bboxes


def shear_x(image, level, replace):
  """Equivalent of PIL Shearing in X dimension."""
  # Shear parallel to x axis is a projective transform
  # with a matrix form of:
  # [1  level
  #  0  1].
  image = contrib_image.transform(
      wrap(image), [1., level, 0., 0., 1., 0., 0., 0.])
  return unwrap(image, replace)


def shear_y(image, level, replace):
  """Equivalent of PIL Shearing in Y dimension."""
  # Shear parallel to y axis is a projective transform
  # with a matrix form of:
  # [1  0
  #  level  1].
  image = contrib_image.transform(
      wrap(image), [1., 0., 0., level, 1., 0., 0., 0.])
  return unwrap(image, replace)


def _shear_bbox(bbox, image_height, image_width, level, shear_horizontal):
  """Shifts the bbox according to how the image was sheared.

  Args:
    bbox: 1D Tensor that has 4 elements (min_y, min_x, max_y, max_x)
      of type float that represents the normalized coordinates between 0 and 1.
    image_height: Int, height of the image.
    image_width: Int, height of the image.
    level: Float. How much to shear the image.
    shear_horizontal: If true then shear in X dimension else shear in
      the Y dimension.

  Returns:
    A tensor of the same shape as bbox, but now with the shifted coordinates.
  """
  image_height, image_width = (
      tf.to_float(image_height), tf.to_float(image_width))

  # Change bbox coordinates to be pixels.
  min_y = tf.to_int32(image_height * bbox[0])
  min_x = tf.to_int32(image_width * bbox[1])
  max_y = tf.to_int32(image_height * bbox[2])
  max_x = tf.to_int32(image_width * bbox[3])
  coordinates = tf.stack(
      [[min_y, min_x], [min_y, max_x], [max_y, min_x], [max_y, max_x]])
  coordinates = tf.cast(coordinates, tf.float32)

  # Shear the coordinates according to the translation matrix.
  if shear_horizontal:
    translation_matrix = tf.stack(
        [[1, 0], [-level, 1]])
  else:
    translation_matrix = tf.stack(
        [[1, -level], [0, 1]])
  translation_matrix = tf.cast(translation_matrix, tf.float32)
  new_coords = tf.cast(
      tf.matmul(translation_matrix, tf.transpose(coordinates)), tf.int32)

  # Find min/max values and convert them back to floats.
  min_y = tf.to_float(tf.reduce_min(new_coords[0, :])) / image_height
  min_x = tf.to_float(tf.reduce_min(new_coords[1, :])) / image_width
  max_y = tf.to_float(tf.reduce_max(new_coords[0, :])) / image_height
  max_x = tf.to_float(tf.reduce_max(new_coords[1, :])) / image_width

  # Clip the bboxes to be sure the fall between [0, 1].
  min_y, min_x, max_y, max_x = _clip_bbox(min_y, min_x, max_y, max_x)
  min_y, min_x, max_y, max_x = _check_bbox_area(min_y, min_x, max_y, max_x)
  return tf.stack([min_y, min_x, max_y, max_x])


def shear_with_bboxes(image, bboxes, level, replace, shear_horizontal):
  """Applies Shear Transformation to the image and shifts the bboxes.

  Args:
    image: 3D uint8 Tensor.
    bboxes: 2D Tensor that is a list of the bboxes in the image. Each bbox
      has 4 elements (min_y, min_x, max_y, max_x) of type float with values
      between [0, 1].
    level: Float. How much to shear the image. This value will be between
      -0.3 to 0.3.
    replace: A one or three value 1D tensor to fill empty pixels.
    shear_horizontal: Boolean. If true then shear in X dimension else shear in
      the Y dimension.

  Returns:
    A tuple containing a 3D uint8 Tensor that will be the result of shearing
    image by level. The second element of the tuple is bboxes, where now
    the coordinates will be shifted to reflect the sheared image.
  """
  if shear_horizontal:
    image = shear_x(image, level, replace)
  else:
    image = shear_y(image, level, replace)

  # Convert bbox coordinates to pixel values.
  image_height = tf.shape(image)[0]
  image_width = tf.shape(image)[1]
  # pylint:disable=g-long-lambda
  wrapped_shear_bbox = lambda bbox: _shear_bbox(
      bbox, image_height, image_width, level, shear_horizontal)
  # pylint:enable=g-long-lambda
  bboxes = tf.map_fn(wrapped_shear_bbox, bboxes)
  return image, bboxes


def autocontrast(image):
  """Implements Autocontrast function from PIL using TF ops.

  Args:
    image: A 3D uint8 tensor.

  Returns:
    The image after it has had autocontrast applied to it and will be of type
    uint8.
  """

  def scale_channel(image):
    """Scale the 2D image using the autocontrast rule."""
    # A possibly cheaper version can be done using cumsum/unique_with_counts
    # over the histogram values, rather than iterating over the entire image.
    # to compute mins and maxes.
    lo = tf.to_float(tf.reduce_min(image))
    hi = tf.to_float(tf.reduce_max(image))

    # Scale the image, making the lowest value 0 and the highest value 255.
    def scale_values(im):
      scale = 255.0 / (hi - lo)
      offset = -lo * scale
      im = tf.to_float(im) * scale + offset
      im = tf.clip_by_value(im, 0.0, 255.0)
      return tf.cast(im, tf.uint8)

    result = tf.cond(hi > lo, lambda: scale_values(image), lambda: image)
    return result

  # Assumes RGB for now.  Scales each channel independently
  # and then stacks the result.
  s1 = scale_channel(image[:, :, 0])
  s2 = scale_channel(image[:, :, 1])
  s3 = scale_channel(image[:, :, 2])
  image = tf.stack([s1, s2, s3], 2)
  return image


def sharpness(image, factor):
  """Implements Sharpness function from PIL using TF ops."""
  orig_image = image
  image = tf.cast(image, tf.float32)
  # Make image 4D for conv operation.
  image = tf.expand_dims(image, 0)
  # SMOOTH PIL Kernel.
  kernel = tf.constant(
      [[1, 1, 1], [1, 5, 1], [1, 1, 1]], dtype=tf.float32,
      shape=[3, 3, 1, 1]) / 13.
  # Tile across channel dimension.
  kernel = tf.tile(kernel, [1, 1, 3, 1])
  strides = [1, 1, 1, 1]
  degenerate = tf.nn.depthwise_conv2d(
      image, kernel, strides, padding='VALID', rate=[1, 1])
  degenerate = tf.clip_by_value(degenerate, 0.0, 255.0)
  degenerate = tf.squeeze(tf.cast(degenerate, tf.uint8), [0])

  # For the borders of the resulting image, fill in the values of the
  # original image.
  mask = tf.ones_like(degenerate)
  padded_mask = tf.pad(mask, [[1, 1], [1, 1], [0, 0]])
  padded_degenerate = tf.pad(degenerate, [[1, 1], [1, 1], [0, 0]])
  result = tf.where(tf.equal(padded_mask, 1), padded_degenerate, orig_image)

  # Blend the final result.
  return blend(result, orig_image, factor)


def equalize(image):
  """Implements Equalize function from PIL using TF ops."""
  def scale_channel(im, c):
    """Scale the data in the channel to implement equalize."""
    im = tf.cast(im[:, :, c], tf.int32)
    # Compute the histogram of the image channel.
    histo = tf.histogram_fixed_width(im, [0, 255], nbins=256)

    # For the purposes of computing the step, filter out the nonzeros.
    nonzero = tf.where(tf.not_equal(histo, 0))
    nonzero_histo = tf.reshape(tf.gather(histo, nonzero), [-1])
    step = (tf.reduce_sum(nonzero_histo) - nonzero_histo[-1]) // 255

    def build_lut(histo, step):
      # Compute the cumulative sum, shifting by step // 2
      # and then normalization by step.
      lut = (tf.cumsum(histo) + (step // 2)) // step
      # Shift lut, prepending with 0.
      lut = tf.concat([[0], lut[:-1]], 0)
      # Clip the counts to be in range.  This is done
      # in the C code for image.point.
      return tf.clip_by_value(lut, 0, 255)

    # If step is zero, return the original image.  Otherwise, build
    # lut from the full histogram and step and then index from it.
    result = tf.cond(tf.equal(step, 0),
                     lambda: im,
                     lambda: tf.gather(build_lut(histo, step), im))

    return tf.cast(result, tf.uint8)

  # Assumes RGB for now.  Scales each channel independently
  # and then stacks the result.
  s1 = scale_channel(image, 0)
  s2 = scale_channel(image, 1)
  s3 = scale_channel(image, 2)
  image = tf.stack([s1, s2, s3], 2)
  return image


def wrap(image):
  """Returns 'image' with an extra channel set to all 1s."""
  shape = tf.shape(image)
  extended_channel = tf.ones([shape[0], shape[1], 1], image.dtype)
  extended = tf.concat([image, extended_channel], 2)
  return extended


def unwrap(image, replace):
  """Unwraps an image produced by wrap.

  Where there is a 0 in the last channel for every spatial position,
  the rest of the three channels in that spatial dimension are grayed
  (set to 128).  Operations like translate and shear on a wrapped
  Tensor will leave 0s in empty locations.  Some transformations look
  at the intensity of values to do preprocessing, and we want these
  empty pixels to assume the 'average' value, rather than pure black.


  Args:
    image: A 3D Image Tensor with 4 channels.
    replace: A one or three value 1D tensor to fill empty pixels.

  Returns:
    image: A 3D image Tensor with 3 channels.
  """
  image_shape = tf.shape(image)
  # Flatten the spatial dimensions.
  flattened_image = tf.reshape(image, [-1, image_shape[2]])

  # Find all pixels where the last channel is zero.
  alpha_channel = flattened_image[:, 3]

  replace = tf.concat([replace, tf.ones([1], image.dtype)], 0)

  # Where they are zero, fill them in with 'replace'.
  flattened_image = tf.where(
      tf.equal(alpha_channel, 0),
      tf.ones_like(flattened_image, dtype=image.dtype) * replace,
      flattened_image)

  image = tf.reshape(flattened_image, image_shape)
  image = tf.slice(image, [0, 0, 0], [image_shape[0], image_shape[1], 3])
  return image


def _cutout_inside_bbox(image, bbox, pad_fraction):
  """Generates cutout mask and the mean pixel value of the bbox.

  First a location is randomly chosen within the image as the center where the
  cutout mask will be applied. Note this can be towards the boundaries of the
  image, so the full cutout mask may not be applied.

  Args:
    image: 3D uint8 Tensor.
    bbox: 1D Tensor that has 4 elements (min_y, min_x, max_y, max_x)
      of type float that represents the normalized coordinates between 0 and 1.
    pad_fraction: Float that specifies how large the cutout mask should be in
      in reference to the size of the original bbox. If pad_fraction is 0.25,
      then the cutout mask will be of shape
      (0.25 * bbox height, 0.25 * bbox width).

  Returns:
    A tuple. Fist element is a tensor of the same shape as image where each
    element is either a 1 or 0 that is used to determine where the image
    will have cutout applied. The second element is the mean of the pixels
    in the image where the bbox is located.
  """
  image_height = tf.shape(image)[0]
  image_width = tf.shape(image)[1]
  # Transform from shape [1, 4] to [4].
  bbox = tf.squeeze(bbox)

  min_y = tf.to_int32(tf.to_float(image_height) * bbox[0])
  min_x = tf.to_int32(tf.to_float(image_width) * bbox[1])
  max_y = tf.to_int32(tf.to_float(image_height) * bbox[2])
  max_x = tf.to_int32(tf.to_float(image_width) * bbox[3])

  # Calculate the mean pixel values in the bounding box, which will be used
  # to fill the cutout region.
  mean = tf.reduce_mean(image[min_y:max_y + 1, min_x:max_x + 1],
                        reduction_indices=[0, 1])

  # Cutout mask will be size pad_size_heigh * 2 by pad_size_width * 2 if the
  # region lies entirely within the bbox.
  box_height = max_y - min_y + 1
  box_width = max_x - min_x + 1
  pad_size_height = tf.to_int32(pad_fraction * (box_height / 2))
  pad_size_width = tf.to_int32(pad_fraction * (box_width / 2))

  # Sample the center location in the image where the zero mask will be applied.
  cutout_center_height = tf.random_uniform(
      shape=[], minval=min_y, maxval=max_y+1,
      dtype=tf.int32)

  cutout_center_width = tf.random_uniform(
      shape=[], minval=min_x, maxval=max_x+1,
      dtype=tf.int32)

  lower_pad = tf.maximum(
      0, cutout_center_height - pad_size_height)
  upper_pad = tf.maximum(
      0, image_height - cutout_center_height - pad_size_height)
  left_pad = tf.maximum(
      0, cutout_center_width - pad_size_width)
  right_pad = tf.maximum(
      0, image_width - cutout_center_width - pad_size_width)

  cutout_shape = [image_height - (lower_pad + upper_pad),
                  image_width - (left_pad + right_pad)]
  padding_dims = [[lower_pad, upper_pad], [left_pad, right_pad]]

  mask = tf.pad(
      tf.zeros(cutout_shape, dtype=image.dtype),
      padding_dims, constant_values=1)

  mask = tf.expand_dims(mask, 2)
  mask = tf.tile(mask, [1, 1, 3])

  return mask, mean


def bbox_cutout(image, bboxes, pad_fraction, replace_with_mean):
  """Applies cutout to the image according to bbox information.

  This is a cutout variant that using bbox information to make more informed
  decisions on where to place the cutout mask.

  Args:
    image: 3D uint8 Tensor.
    bboxes: 2D Tensor that is a list of the bboxes in the image. Each bbox
      has 4 elements (min_y, min_x, max_y, max_x) of type float with values
      between [0, 1].
    pad_fraction: Float that specifies how large the cutout mask should be in
      in reference to the size of the original bbox. If pad_fraction is 0.25,
      then the cutout mask will be of shape
      (0.25 * bbox height, 0.25 * bbox width).
    replace_with_mean: Boolean that specified what value should be filled in
      where the cutout mask is applied. Since the incoming image will be of
      uint8 and will not have had any mean normalization applied, by default
      we set the value to be 128. If replace_with_mean is True then we find
      the mean pixel values across the channel dimension and use those to fill
      in where the cutout mask is applied.

  Returns:
    A tuple. First element is a tensor of the same shape as image that has
    cutout applied to it. Second element is the bboxes that were passed in
    that will be unchanged.
  """
  def apply_bbox_cutout(image, bboxes, pad_fraction):
    """Applies cutout to a single bounding box within image."""
    # Choose a single bounding box to apply cutout to.
    random_index = tf.random_uniform(
        shape=[], maxval=tf.shape(bboxes)[0], dtype=tf.int32)
    # Select the corresponding bbox and apply cutout.
    chosen_bbox = tf.gather(bboxes, random_index)
    mask, mean = _cutout_inside_bbox(image, chosen_bbox, pad_fraction)

    # When applying cutout we either set the pixel value to 128 or to the mean
    # value inside the bbox.
    replace = mean if replace_with_mean else 128

    # Apply the cutout mask to the image. Where the mask is 0 we fill it with
    # `replace`.
    image = tf.where(
        tf.equal(mask, 0),
        tf.cast(tf.ones_like(image, dtype=image.dtype) * replace,
                dtype=image.dtype),
        image)
    return image

  # Check to see if there are boxes, if so then apply boxcutout.
  image = tf.cond(tf.equal(tf.size(bboxes), 0), lambda: image,
                  lambda: apply_bbox_cutout(image, bboxes, pad_fraction))

  return image, bboxes


NAME_TO_FUNC = {
    'AutoContrast': autocontrast,
    'Equalize': equalize,
    'Posterize': posterize,
    'Solarize': solarize,
    'SolarizeAdd': solarize_add,
    'Color': color,
    'Contrast': contrast,
    'Brightness': brightness,
    'Sharpness': sharpness,
    'Cutout': cutout,
    'BBox_Cutout': bbox_cutout,
    'Rotate_BBox': rotate_with_bboxes,
    # pylint:disable=g-long-lambda
    'TranslateX_BBox': lambda image, bboxes, pixels, replace: translate_bbox(
        image, bboxes, pixels, replace, shift_horizontal=True),
    'TranslateY_BBox': lambda image, bboxes, pixels, replace: translate_bbox(
        image, bboxes, pixels, replace, shift_horizontal=False),
    'ShearX_BBox': lambda image, bboxes, level, replace: shear_with_bboxes(
        image, bboxes, level, replace, shear_horizontal=True),
    'ShearY_BBox': lambda image, bboxes, level, replace: shear_with_bboxes(
        image, bboxes, level, replace, shear_horizontal=False),
    # pylint:enable=g-long-lambda
    'Rotate_Only_BBoxes': rotate_only_bboxes,
    'ShearX_Only_BBoxes': shear_x_only_bboxes,
    'ShearY_Only_BBoxes': shear_y_only_bboxes,
    'TranslateX_Only_BBoxes': translate_x_only_bboxes,
    'TranslateY_Only_BBoxes': translate_y_only_bboxes,
    'Flip_Only_BBoxes': flip_only_bboxes,
    'Solarize_Only_BBoxes': solarize_only_bboxes,
    'Equalize_Only_BBoxes': equalize_only_bboxes,
    'Cutout_Only_BBoxes': cutout_only_bboxes,
}


def _randomly_negate_tensor(tensor):
  """With 50% prob turn the tensor negative."""
  should_flip = tf.cast(tf.floor(tf.random_uniform([]) + 0.5), tf.bool)
  final_tensor = tf.cond(should_flip, lambda: tensor, lambda: -tensor)
  return final_tensor


def _rotate_level_to_arg(level):
  level = (level/_MAX_LEVEL) * 30.
  level = _randomly_negate_tensor(level)
  return (level,)


def _shrink_level_to_arg(level):
  """Converts level to ratio by which we shrink the image content."""
  if level == 0:
    return (1.0,)  # if level is zero, do not shrink the image
  # Maximum shrinking ratio is 2.9.
  level = 2. / (_MAX_LEVEL / level) + 0.9
  return (level,)


def _enhance_level_to_arg(level):
  return ((level/_MAX_LEVEL) * 1.8 + 0.1,)


def _shear_level_to_arg(level):
  level = (level/_MAX_LEVEL) * 0.3
  # Flip level to negative with 50% chance.
  level = _randomly_negate_tensor(level)
  return (level,)


def _translate_level_to_arg(level, translate_const):
  level = (level/_MAX_LEVEL) * float(translate_const)
  # Flip level to negative with 50% chance.
  level = _randomly_negate_tensor(level)
  return (level,)


def _bbox_cutout_level_to_arg(level, hparams):
  cutout_pad_fraction = (level/_MAX_LEVEL) * hparams.cutout_max_pad_fraction
  return (cutout_pad_fraction,
          hparams.cutout_bbox_replace_with_mean)


def level_to_arg(hparams):
  return {
      'AutoContrast': lambda level: (),
      'Equalize': lambda level: (),
      'Posterize': lambda level: (int((level/_MAX_LEVEL) * 4),),
      'Solarize': lambda level: (int((level/_MAX_LEVEL) * 256),),
      'SolarizeAdd': lambda level: (int((level/_MAX_LEVEL) * 110),),
      'Color': _enhance_level_to_arg,
      'Contrast': _enhance_level_to_arg,
      'Brightness': _enhance_level_to_arg,
      'Sharpness': _enhance_level_to_arg,
      'Cutout': lambda level: (int((level/_MAX_LEVEL) * hparams.cutout_const),),
      # pylint:disable=g-long-lambda
      'BBox_Cutout': lambda level: _bbox_cutout_level_to_arg(
          level, hparams),
      'TranslateX_BBox': lambda level: _translate_level_to_arg(
          level, hparams.translate_const),
      'TranslateY_BBox': lambda level: _translate_level_to_arg(
          level, hparams.translate_const),
      # pylint:enable=g-long-lambda
      'ShearX_BBox': _shear_level_to_arg,
      'ShearY_BBox': _shear_level_to_arg,
      'Rotate_BBox': _rotate_level_to_arg,
      'Rotate_Only_BBoxes': _rotate_level_to_arg,
      'ShearX_Only_BBoxes': _shear_level_to_arg,
      'ShearY_Only_BBoxes': _shear_level_to_arg,
      # pylint:disable=g-long-lambda
      'TranslateX_Only_BBoxes': lambda level: _translate_level_to_arg(
          level, hparams.translate_bbox_const),
      'TranslateY_Only_BBoxes': lambda level: _translate_level_to_arg(
          level, hparams.translate_bbox_const),
      # pylint:enable=g-long-lambda
      'Flip_Only_BBoxes': lambda level: (),
      'Solarize_Only_BBoxes': lambda level: (int((level/_MAX_LEVEL) * 256),),
      'Equalize_Only_BBoxes': lambda level: (),
      # pylint:disable=g-long-lambda
      'Cutout_Only_BBoxes': lambda level: (
          int((level/_MAX_LEVEL) * hparams.cutout_bbox_const),),
      # pylint:enable=g-long-lambda
  }


def bbox_wrapper(func):
  """Adds a bboxes function argument to func and returns unchanged bboxes."""
  def wrapper(images, bboxes, *args, **kwargs):
    return (func(images, *args, **kwargs), bboxes)
  return wrapper


def _parse_policy_info(name, prob, level, replace_value, augmentation_hparams):
  """Return the function that corresponds to `name` and update `level` param."""
  func = NAME_TO_FUNC[name]
  args = level_to_arg(augmentation_hparams)[name](level)

  if six.PY2:
    # pylint: disable=deprecated-method
    arg_spec = inspect.getargspec(func)
    # pylint: enable=deprecated-method
  else:
    arg_spec = inspect.getfullargspec(func)

  # Check to see if prob is passed into function. This is used for operations
  # where we alter bboxes independently.
  # pytype:disable=wrong-arg-types
  if 'prob' in arg_spec[0]:
    args = tuple([prob] + list(args))
  # pytype:enable=wrong-arg-types

  # Add in replace arg if it is required for the function that is being called.
  if 'replace' in arg_spec[0]:
    # Make sure replace is the final argument
    assert 'replace' == arg_spec[0][-1]
    args = tuple(list(args) + [replace_value])

  # Add bboxes as the second positional argument for the function if it does
  # not already exist.
  if 'bboxes' not in arg_spec[0]:
    func = bbox_wrapper(func)
  return (func, prob, args)


def _apply_func_with_prob(func, image, args, prob, bboxes):
  """Apply `func` to image w/ `args` as input with probability `prob`."""
  assert isinstance(args, tuple)
  if six.PY2:
    # pylint: disable=deprecated-method
    arg_spec = inspect.getargspec(func)
    # pylint: enable=deprecated-method
  else:
    arg_spec = inspect.getfullargspec(func)
  assert 'bboxes' == arg_spec[0][1]

  # If prob is a function argument, then this randomness is being handled
  # inside the function, so make sure it is always called.
  if 'prob' in arg_spec[0]:
    prob = 1.0

  # Apply the function with probability `prob`.
  should_apply_op = tf.cast(
      tf.floor(tf.random_uniform([], dtype=tf.float32) + prob), tf.bool)
  augmented_image, augmented_bboxes = tf.cond(
      should_apply_op,
      lambda: func(image, bboxes, *args),
      lambda: (image, bboxes))
  return augmented_image, augmented_bboxes


def select_and_apply_random_policy(policies, image, bboxes):
  """Select a random policy from `policies` and apply it to `image`."""
  policy_to_select = tf.random_uniform([], maxval=len(policies), dtype=tf.int32)
  # Note that using tf.case instead of tf.conds would result in significantly
  # larger graphs and would even break export for some larger policies.
  for (i, policy) in enumerate(policies):
    image, bboxes = tf.cond(
        tf.equal(i, policy_to_select),
        lambda selected_policy=policy: selected_policy(image, bboxes),
        lambda: (image, bboxes))
  return (image, bboxes)


def build_and_apply_nas_policy(policies, image, bboxes,
                               augmentation_hparams):
  """Build a policy from the given policies passed in and apply to image.

  Args:
    policies: list of lists of tuples in the form `(func, prob, level)`, `func`
      is a string name of the augmentation function, `prob` is the probability
      of applying the `func` operation, `level` is the input argument for
      `func`.
    image: tf.Tensor that the resulting policy will be applied to.
    bboxes:
    augmentation_hparams: Hparams associated with the NAS learned policy.

  Returns:
    A version of image that now has data augmentation applied to it based on
    the `policies` pass into the function. Additionally, returns bboxes if
    a value for them is passed in that is not None
  """
  replace_value = [128, 128, 128]

  # func is the string name of the augmentation function, prob is the
  # probability of applying the operation and level is the parameter associated
  # with the tf op.

  # tf_policies are functions that take in an image and return an augmented
  # image.
  tf_policies = []
  for policy in policies:
    tf_policy = []
    # Link string name to the correct python function and make sure the correct
    # argument is passed into that function.
    for policy_info in policy:
      policy_info = list(policy_info) + [replace_value, augmentation_hparams]

      tf_policy.append(_parse_policy_info(*policy_info))
    # Now build the tf policy that will apply the augmentation procedue
    # on image.
    def make_final_policy(tf_policy_):
      def final_policy(image_, bboxes_):
        for func, prob, args in tf_policy_:
          image_, bboxes_ = _apply_func_with_prob(
              func, image_, args, prob, bboxes_)
        return image_, bboxes_
      return final_policy
    tf_policies.append(make_final_policy(tf_policy))

  augmented_image, augmented_bbox = select_and_apply_random_policy(
      tf_policies, image, bboxes)
  # If no bounding boxes were specified, then just return the images.
  return (augmented_image, augmented_bbox)


# TODO(barretzoph): Add in ArXiv link once paper is out.
def distort_image_with_autoaugment(image, bboxes, augmentation_name):
  """Applies the AutoAugment policy to `image` and `bboxes`.

  Args:
    image: `Tensor` of shape [height, width, 3] representing an image.
    bboxes: `Tensor` of shape [N, 4] representing ground truth boxes that are
      normalized between [0, 1].
    augmentation_name: The name of the AutoAugment policy to use. The available
      options are `v0`, `v1`, `v2`, `v3` and `test`. `v0` is the policy used for
      all of the results in the paper and was found to achieve the best results
      on the COCO dataset. `v1`, `v2` and `v3` are additional good policies
      found on the COCO dataset that have slight variation in what operations
      were used during the search procedure along with how many operations are
      applied in parallel to a single image (2 vs 3).

  Returns:
    A tuple containing the augmented versions of `image` and `bboxes`.
  """
  image = tf.cast(image, tf.uint8)
  available_policies = {'v0': policy_v0, 'v1': policy_v1, 'v2': policy_v2,
                        'v3': policy_v3, 'test': policy_vtest}
  if augmentation_name not in available_policies:
    raise ValueError('Invalid augmentation_name: {}'.format(augmentation_name))

  policy = available_policies[augmentation_name]()
  # Hparams that will be used for AutoAugment.
  augmentation_hparams = contrib_training.HParams(
      cutout_max_pad_fraction=0.75,
      cutout_bbox_replace_with_mean=False,
      cutout_const=100,
      translate_const=250,
      cutout_bbox_const=50,
      translate_bbox_const=120)

  augmented_image, augmented_bbox = (
      build_and_apply_nas_policy(policy, image, bboxes, augmentation_hparams))
  augmented_image = tf.cast(augmented_image, tf.float32)
  return augmented_image, augmented_bbox