File size: 6,162 Bytes
97b6013 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 |
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for object_detection.metrics."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import tensorflow.compat.v1 as tf
from object_detection.utils import metrics
class MetricsTest(tf.test.TestCase):
def test_compute_cor_loc(self):
num_gt_imgs_per_class = np.array([100, 1, 5, 1, 1], dtype=int)
num_images_correctly_detected_per_class = np.array(
[10, 0, 1, 0, 0], dtype=int)
corloc = metrics.compute_cor_loc(num_gt_imgs_per_class,
num_images_correctly_detected_per_class)
expected_corloc = np.array([0.1, 0, 0.2, 0, 0], dtype=float)
self.assertTrue(np.allclose(corloc, expected_corloc))
def test_compute_cor_loc_nans(self):
num_gt_imgs_per_class = np.array([100, 0, 0, 1, 1], dtype=int)
num_images_correctly_detected_per_class = np.array(
[10, 0, 1, 0, 0], dtype=int)
corloc = metrics.compute_cor_loc(num_gt_imgs_per_class,
num_images_correctly_detected_per_class)
expected_corloc = np.array([0.1, np.nan, np.nan, 0, 0], dtype=float)
self.assertAllClose(corloc, expected_corloc)
def test_compute_precision_recall(self):
num_gt = 10
scores = np.array([0.4, 0.3, 0.6, 0.2, 0.7, 0.1], dtype=float)
labels = np.array([0, 1, 1, 0, 0, 1], dtype=bool)
labels_float_type = np.array([0, 1, 1, 0, 0, 1], dtype=float)
accumulated_tp_count = np.array([0, 1, 1, 2, 2, 3], dtype=float)
expected_precision = accumulated_tp_count / np.array([1, 2, 3, 4, 5, 6])
expected_recall = accumulated_tp_count / num_gt
precision, recall = metrics.compute_precision_recall(scores, labels, num_gt)
precision_float_type, recall_float_type = metrics.compute_precision_recall(
scores, labels_float_type, num_gt)
self.assertAllClose(precision, expected_precision)
self.assertAllClose(recall, expected_recall)
self.assertAllClose(precision_float_type, expected_precision)
self.assertAllClose(recall_float_type, expected_recall)
def test_compute_precision_recall_float(self):
num_gt = 10
scores = np.array([0.4, 0.3, 0.6, 0.2, 0.7, 0.1], dtype=float)
labels_float = np.array([0, 1, 1, 0.5, 0, 1], dtype=float)
expected_precision = np.array(
[0., 0.5, 0.33333333, 0.5, 0.55555556, 0.63636364], dtype=float)
expected_recall = np.array([0., 0.1, 0.1, 0.2, 0.25, 0.35], dtype=float)
precision, recall = metrics.compute_precision_recall(
scores, labels_float, num_gt)
self.assertAllClose(precision, expected_precision)
self.assertAllClose(recall, expected_recall)
def test_compute_average_precision(self):
precision = np.array([0.8, 0.76, 0.9, 0.65, 0.7, 0.5, 0.55, 0], dtype=float)
recall = np.array([0.3, 0.3, 0.4, 0.4, 0.45, 0.45, 0.5, 0.5], dtype=float)
processed_precision = np.array(
[0.9, 0.9, 0.9, 0.7, 0.7, 0.55, 0.55, 0], dtype=float)
recall_interval = np.array([0.3, 0, 0.1, 0, 0.05, 0, 0.05, 0], dtype=float)
expected_mean_ap = np.sum(recall_interval * processed_precision)
mean_ap = metrics.compute_average_precision(precision, recall)
self.assertAlmostEqual(expected_mean_ap, mean_ap)
def test_compute_precision_recall_and_ap_no_groundtruth(self):
num_gt = 0
scores = np.array([0.4, 0.3, 0.6, 0.2, 0.7, 0.1], dtype=float)
labels = np.array([0, 0, 0, 0, 0, 0], dtype=bool)
expected_precision = None
expected_recall = None
precision, recall = metrics.compute_precision_recall(scores, labels, num_gt)
self.assertEquals(precision, expected_precision)
self.assertEquals(recall, expected_recall)
ap = metrics.compute_average_precision(precision, recall)
self.assertTrue(np.isnan(ap))
def test_compute_recall_at_k(self):
num_gt = 4
tp_fp = [
np.array([1, 0, 0], dtype=float),
np.array([0, 1], dtype=float),
np.array([0, 0, 0, 0, 0], dtype=float)
]
tp_fp_bool = [
np.array([True, False, False], dtype=bool),
np.array([False, True], dtype=float),
np.array([False, False, False, False, False], dtype=float)
]
recall_1 = metrics.compute_recall_at_k(tp_fp, num_gt, 1)
recall_3 = metrics.compute_recall_at_k(tp_fp, num_gt, 3)
recall_5 = metrics.compute_recall_at_k(tp_fp, num_gt, 5)
recall_3_bool = metrics.compute_recall_at_k(tp_fp_bool, num_gt, 3)
self.assertAlmostEqual(recall_1, 0.25)
self.assertAlmostEqual(recall_3, 0.5)
self.assertAlmostEqual(recall_3_bool, 0.5)
self.assertAlmostEqual(recall_5, 0.5)
def test_compute_median_rank_at_k(self):
tp_fp = [
np.array([1, 0, 0], dtype=float),
np.array([0, 0.1], dtype=float),
np.array([0, 0, 0, 0, 0], dtype=float)
]
tp_fp_bool = [
np.array([True, False, False], dtype=bool),
np.array([False, True], dtype=float),
np.array([False, False, False, False, False], dtype=float)
]
median_ranks_1 = metrics.compute_median_rank_at_k(tp_fp, 1)
median_ranks_3 = metrics.compute_median_rank_at_k(tp_fp, 3)
median_ranks_5 = metrics.compute_median_rank_at_k(tp_fp, 5)
median_ranks_3_bool = metrics.compute_median_rank_at_k(tp_fp_bool, 3)
self.assertEquals(median_ranks_1, 0)
self.assertEquals(median_ranks_3, 0.5)
self.assertEquals(median_ranks_3_bool, 0.5)
self.assertEquals(median_ranks_5, 0.5)
if __name__ == '__main__':
tf.test.main()
|