File size: 16,602 Bytes
97b6013 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 |
# Copyright 2017 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Controller coordinates sampling and training model.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from six.moves import xrange
import tensorflow as tf
import numpy as np
import pickle
import random
flags = tf.flags
gfile = tf.gfile
FLAGS = flags.FLAGS
def find_best_eps_lambda(rewards, lengths):
"""Find the best lambda given a desired epsilon = FLAGS.max_divergence."""
# perhaps not the best way to do this
desired_div = FLAGS.max_divergence * np.mean(lengths)
def calc_divergence(eps_lambda):
max_reward = np.max(rewards)
logz = (max_reward / eps_lambda +
np.log(np.mean(np.exp((rewards - max_reward) / eps_lambda))))
exprr = np.mean(np.exp(rewards / eps_lambda - logz) *
rewards / eps_lambda)
return exprr - logz
left = 0.0
right = 1000.0
if len(rewards) <= 8:
return (left + right) / 2
num_iter = max(4, 1 + int(np.log((right - left) / 0.1) / np.log(2.0)))
for _ in xrange(num_iter):
mid = (left + right) / 2
cur_div = calc_divergence(mid)
if cur_div > desired_div:
left = mid
else:
right = mid
return (left + right) / 2
class Controller(object):
def __init__(self, env, env_spec, internal_dim,
use_online_batch=True,
batch_by_steps=False,
unify_episodes=False,
replay_batch_size=None,
max_step=None,
cutoff_agent=1,
save_trajectories_file=None,
use_trust_region=False,
use_value_opt=False,
update_eps_lambda=False,
prioritize_by='rewards',
get_model=None,
get_replay_buffer=None,
get_buffer_seeds=None):
self.env = env
self.env_spec = env_spec
self.internal_dim = internal_dim
self.use_online_batch = use_online_batch
self.batch_by_steps = batch_by_steps
self.unify_episodes = unify_episodes
self.replay_batch_size = replay_batch_size
self.max_step = max_step
self.cutoff_agent = cutoff_agent
self.save_trajectories_file = save_trajectories_file
self.use_trust_region = use_trust_region
self.use_value_opt = use_value_opt
self.update_eps_lambda = update_eps_lambda
self.prioritize_by = prioritize_by
self.model = get_model()
self.replay_buffer = get_replay_buffer()
self.seed_replay_buffer(get_buffer_seeds())
self.internal_state = np.array([self.initial_internal_state()] *
len(self.env))
self.last_obs = self.env_spec.initial_obs(len(self.env))
self.last_act = self.env_spec.initial_act(len(self.env))
self.last_pad = np.zeros(len(self.env))
self.start_episode = np.array([True] * len(self.env))
self.step_count = np.array([0] * len(self.env))
self.episode_running_rewards = np.zeros(len(self.env))
self.episode_running_lengths = np.zeros(len(self.env))
self.episode_rewards = []
self.greedy_episode_rewards = []
self.episode_lengths = []
self.total_rewards = []
self.best_batch_rewards = None
def setup(self, train=True):
self.model.setup(train=train)
def initial_internal_state(self):
return np.zeros(self.model.policy.rnn_state_dim)
def _sample_episodes(self, sess, greedy=False):
"""Sample episodes from environment using model."""
# reset environments as necessary
obs_after_reset = self.env.reset_if(self.start_episode)
for i, obs in enumerate(obs_after_reset):
if obs is not None:
self.step_count[i] = 0
self.internal_state[i] = self.initial_internal_state()
for j in xrange(len(self.env_spec.obs_dims)):
self.last_obs[j][i] = obs[j]
for j in xrange(len(self.env_spec.act_dims)):
self.last_act[j][i] = -1
self.last_pad[i] = 0
# maintain episode as a single unit if the last sampling
# batch ended before the episode was terminated
if self.unify_episodes:
assert len(obs_after_reset) == 1
new_ep = obs_after_reset[0] is not None
else:
new_ep = True
self.start_id = 0 if new_ep else len(self.all_obs[:])
initial_state = self.internal_state
all_obs = [] if new_ep else self.all_obs[:]
all_act = ([self.last_act] if new_ep else self.all_act[:])
all_pad = [] if new_ep else self.all_pad[:]
rewards = [] if new_ep else self.rewards[:]
# start stepping in the environments
step = 0
while not self.env.all_done():
self.step_count += 1 - np.array(self.env.dones)
next_internal_state, sampled_actions = self.model.sample_step(
sess, self.last_obs, self.internal_state, self.last_act,
greedy=greedy)
env_actions = self.env_spec.convert_actions_to_env(sampled_actions)
next_obs, reward, next_dones, _ = self.env.step(env_actions)
all_obs.append(self.last_obs)
all_act.append(sampled_actions)
all_pad.append(self.last_pad)
rewards.append(reward)
self.internal_state = next_internal_state
self.last_obs = next_obs
self.last_act = sampled_actions
self.last_pad = np.array(next_dones).astype('float32')
step += 1
if self.max_step and step >= self.max_step:
break
self.all_obs = all_obs[:]
self.all_act = all_act[:]
self.all_pad = all_pad[:]
self.rewards = rewards[:]
# append final observation
all_obs.append(self.last_obs)
return initial_state, all_obs, all_act, rewards, all_pad
def sample_episodes(self, sess, greedy=False):
"""Sample steps from the environment until we have enough for a batch."""
# check if last batch ended with episode that was not terminated
if self.unify_episodes:
self.all_new_ep = self.start_episode[0]
# sample episodes until we either have enough episodes or enough steps
episodes = []
total_steps = 0
while total_steps < self.max_step * len(self.env):
(initial_state,
observations, actions, rewards,
pads) = self._sample_episodes(sess, greedy=greedy)
observations = zip(*observations)
actions = zip(*actions)
terminated = np.array(self.env.dones)
self.total_rewards = np.sum(np.array(rewards[self.start_id:]) *
(1 - np.array(pads[self.start_id:])), axis=0)
self.episode_running_rewards *= 1 - self.start_episode
self.episode_running_lengths *= 1 - self.start_episode
self.episode_running_rewards += self.total_rewards
self.episode_running_lengths += np.sum(1 - np.array(pads[self.start_id:]), axis=0)
episodes.extend(self.convert_from_batched_episodes(
initial_state, observations, actions, rewards,
terminated, pads))
total_steps += np.sum(1 - np.array(pads))
# set next starting episodes
self.start_episode = np.logical_or(terminated,
self.step_count >= self.cutoff_agent)
episode_rewards = self.episode_running_rewards[self.start_episode].tolist()
self.episode_rewards.extend(episode_rewards)
self.episode_lengths.extend(self.episode_running_lengths[self.start_episode].tolist())
self.episode_rewards = self.episode_rewards[-100:]
self.episode_lengths = self.episode_lengths[-100:]
if (self.save_trajectories_file is not None and
(self.best_batch_rewards is None or
np.mean(self.total_rewards) > self.best_batch_rewards)):
self.best_batch_rewards = np.mean(self.total_rewards)
my_episodes = self.convert_from_batched_episodes(
initial_state, observations, actions, rewards,
terminated, pads)
with gfile.GFile(self.save_trajectories_file, 'w') as f:
pickle.dump(my_episodes, f)
if not self.batch_by_steps:
return (initial_state,
observations, actions, rewards,
terminated, pads)
return self.convert_to_batched_episodes(episodes)
def _train(self, sess,
observations, initial_state, actions,
rewards, terminated, pads):
"""Train model using batch."""
avg_episode_reward = np.mean(self.episode_rewards)
greedy_episode_reward = (np.mean(self.greedy_episode_rewards)
if self.greedy_episode_rewards else
avg_episode_reward)
loss, summary = None, None
if self.use_trust_region:
# use trust region to optimize policy
loss, _, summary = self.model.trust_region_step(
sess,
observations, initial_state, actions,
rewards, terminated, pads,
avg_episode_reward=avg_episode_reward,
greedy_episode_reward=greedy_episode_reward)
else: # otherwise use simple gradient descent on policy
loss, _, summary = self.model.train_step(
sess,
observations, initial_state, actions,
rewards, terminated, pads,
avg_episode_reward=avg_episode_reward,
greedy_episode_reward=greedy_episode_reward)
if self.use_value_opt: # optionally perform specific value optimization
self.model.fit_values(
sess,
observations, initial_state, actions,
rewards, terminated, pads)
return loss, summary
def train(self, sess):
"""Sample some episodes and train on some episodes."""
cur_step = sess.run(self.model.inc_global_step)
self.cur_step = cur_step
# on the first iteration, set target network close to online network
if self.cur_step == 0:
for _ in xrange(100):
sess.run(self.model.copy_op)
# on other iterations, just perform single target <-- online operation
sess.run(self.model.copy_op)
# sample from env
(initial_state,
observations, actions, rewards,
terminated, pads) = self.sample_episodes(sess)
# add to replay buffer
self.add_to_replay_buffer(
initial_state, observations, actions,
rewards, terminated, pads)
loss, summary = 0, None
# train on online batch
if self.use_online_batch:
loss, summary = self._train(
sess,
observations, initial_state, actions,
rewards, terminated, pads)
# update relative entropy coefficient
if self.update_eps_lambda:
episode_rewards = np.array(self.episode_rewards)
episode_lengths = np.array(self.episode_lengths)
eps_lambda = find_best_eps_lambda(
episode_rewards[-20:], episode_lengths[-20:])
sess.run(self.model.objective.assign_eps_lambda,
feed_dict={self.model.objective.new_eps_lambda: eps_lambda})
# train on replay batch
replay_batch, replay_probs = self.get_from_replay_buffer(
self.replay_batch_size)
if replay_batch:
(initial_state,
observations, actions, rewards,
terminated, pads) = replay_batch
loss, summary = self._train(
sess,
observations, initial_state, actions,
rewards, terminated, pads)
return loss, summary, self.total_rewards, self.episode_rewards
def eval(self, sess):
"""Use greedy sampling."""
(initial_state,
observations, actions, rewards,
pads, terminated) = self.sample_episodes(sess, greedy=True)
total_rewards = np.sum(np.array(rewards) * (1 - np.array(pads)), axis=0)
return total_rewards, self.episode_rewards
def convert_from_batched_episodes(
self, initial_state, observations, actions, rewards,
terminated, pads):
"""Convert time-major batch of episodes to batch-major list of episodes."""
rewards = np.array(rewards)
pads = np.array(pads)
observations = [np.array(obs) for obs in observations]
actions = [np.array(act) for act in actions]
total_rewards = np.sum(rewards * (1 - pads), axis=0)
total_length = np.sum(1 - pads, axis=0).astype('int32')
episodes = []
num_episodes = rewards.shape[1]
for i in xrange(num_episodes):
length = total_length[i]
ep_initial = initial_state[i]
ep_obs = [obs[:length + 1, i, ...] for obs in observations]
ep_act = [act[:length + 1, i, ...] for act in actions]
ep_rewards = rewards[:length, i]
episodes.append(
[ep_initial, ep_obs, ep_act, ep_rewards, terminated[i]])
return episodes
def convert_to_batched_episodes(self, episodes, max_length=None):
"""Convert batch-major list of episodes to time-major batch of episodes."""
lengths = [len(ep[-2]) for ep in episodes]
max_length = max_length or max(lengths)
new_episodes = []
for ep, length in zip(episodes, lengths):
initial, observations, actions, rewards, terminated = ep
observations = [np.resize(obs, [max_length + 1] + list(obs.shape)[1:])
for obs in observations]
actions = [np.resize(act, [max_length + 1] + list(act.shape)[1:])
for act in actions]
pads = np.array([0] * length + [1] * (max_length - length))
rewards = np.resize(rewards, [max_length]) * (1 - pads)
new_episodes.append([initial, observations, actions, rewards,
terminated, pads])
(initial, observations, actions, rewards,
terminated, pads) = zip(*new_episodes)
observations = [np.swapaxes(obs, 0, 1)
for obs in zip(*observations)]
actions = [np.swapaxes(act, 0, 1)
for act in zip(*actions)]
rewards = np.transpose(rewards)
pads = np.transpose(pads)
return (initial, observations, actions, rewards, terminated, pads)
def add_to_replay_buffer(self, initial_state,
observations, actions, rewards,
terminated, pads):
"""Add batch of episodes to replay buffer."""
if self.replay_buffer is None:
return
rewards = np.array(rewards)
pads = np.array(pads)
total_rewards = np.sum(rewards * (1 - pads), axis=0)
episodes = self.convert_from_batched_episodes(
initial_state, observations, actions, rewards,
terminated, pads)
priorities = (total_rewards if self.prioritize_by == 'reward'
else self.cur_step)
if not self.unify_episodes or self.all_new_ep:
self.last_idxs = self.replay_buffer.add(
episodes, priorities)
else:
# If we are unifying episodes, we attempt to
# keep them unified in the replay buffer.
# The first episode sampled in the current batch is a
# continuation of the last episode from the previous batch
self.replay_buffer.add(episodes[:1], priorities, self.last_idxs[-1:])
if len(episodes) > 1:
self.replay_buffer.add(episodes[1:], priorities)
def get_from_replay_buffer(self, batch_size):
"""Sample a batch of episodes from the replay buffer."""
if self.replay_buffer is None or len(self.replay_buffer) < 1 * batch_size:
return None, None
desired_count = batch_size * self.max_step
# in the case of batch_by_steps, we sample larger and larger
# amounts from the replay buffer until we have enough steps.
while True:
if batch_size > len(self.replay_buffer):
batch_size = len(self.replay_buffer)
episodes, probs = self.replay_buffer.get_batch(batch_size)
count = sum(len(ep[-2]) for ep in episodes)
if count >= desired_count or not self.batch_by_steps:
break
if batch_size == len(self.replay_buffer):
return None, None
batch_size *= 1.2
return (self.convert_to_batched_episodes(episodes), probs)
def seed_replay_buffer(self, episodes):
"""Seed the replay buffer with some episodes."""
if self.replay_buffer is None:
return
# just need to add initial state
for i in xrange(len(episodes)):
episodes[i] = [self.initial_internal_state()] + episodes[i]
self.replay_buffer.seed_buffer(episodes)
|