File size: 6,012 Bytes
97b6013
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
# Copyright 2017 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

"""Utilities for environment interface with agent / tensorflow."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
from six.moves import xrange


class spaces(object):
  discrete = 0
  box = 1


def get_space(space):
  if hasattr(space, 'n'):
    return space.n, spaces.discrete, None
  elif hasattr(space, 'shape'):
    return np.prod(space.shape), spaces.box, (space.low, space.high)


def get_spaces(spaces):
  if hasattr(spaces, 'spaces'):
    return zip(*[get_space(space) for space in spaces.spaces])
  else:
    return [(ret,) for ret in get_space(spaces)]


class EnvSpec(object):

  def __init__(self, env, try_combining_actions=True,
               discretize_actions=None):
    self.discretize_actions = discretize_actions

    # figure out observation space
    self.obs_space = env.observation_space
    self.obs_dims, self.obs_types, self.obs_info = get_spaces(self.obs_space)

    # figure out action space
    self.act_space = env.action_space
    self.act_dims, self.act_types, self.act_info = get_spaces(self.act_space)

    if self.discretize_actions:
      self._act_dims = self.act_dims[:]
      self._act_types = self.act_types[:]
      self.act_dims = []
      self.act_types = []
      for i, (dim, typ) in enumerate(zip(self._act_dims, self._act_types)):
        if typ == spaces.discrete:
          self.act_dims.append(dim)
          self.act_types.append(spaces.discrete)
        elif typ == spaces.box:
          for _ in xrange(dim):
            self.act_dims.append(self.discretize_actions)
            self.act_types.append(spaces.discrete)
    else:
      self._act_dims = None
      self._act_types = None

    if (try_combining_actions and
        all(typ == spaces.discrete for typ in self.act_types)):
      self.combine_actions = True
      self.orig_act_dims = self.act_dims[:]
      self.orig_act_types = self.act_types[:]
      total_act_dim = 1
      for dim in self.act_dims:
        total_act_dim *= dim
      self.act_dims = [total_act_dim]
      self.act_types = [spaces.discrete]
    else:
      self.combine_actions = False

    self.obs_dims_and_types = tuple(zip(self.obs_dims, self.obs_types))
    self.act_dims_and_types = tuple(zip(self.act_dims, self.act_types))

    self.total_obs_dim = sum(self.obs_dims)
    self.total_sampling_act_dim = sum(self.sampling_dim(dim, typ)
                                      for dim, typ in self.act_dims_and_types)
    self.total_sampled_act_dim = sum(self.act_dims)

  def sampling_dim(self, dim, typ):
    if typ == spaces.discrete:
      return dim
    elif typ == spaces.box:
      return 2 * dim  # Gaussian mean and std
    else:
      assert False

  def convert_actions_to_env(self, actions):
    if self.combine_actions:
      new_actions = []
      actions = actions[0]
      for dim in self.orig_act_dims:
        new_actions.append(np.mod(actions, dim))
        actions = (actions / dim).astype('int32')
      actions = new_actions

    if self.discretize_actions:
      new_actions = []
      idx = 0
      for i, (dim, typ) in enumerate(zip(self._act_dims, self._act_types)):
        if typ == spaces.discrete:
          new_actions.append(actions[idx])
          idx += 1
        elif typ == spaces.box:
          low, high = self.act_info[i]
          cur_action = []
          for j in xrange(dim):
            cur_action.append(
                low[j] + (high[j] - low[j]) * actions[idx] /
                float(self.discretize_actions))
            idx += 1
          new_actions.append(np.hstack(cur_action))
      actions = new_actions

    return actions

  def convert_env_actions_to_actions(self, actions):
    if not self.combine_actions:
      return actions

    new_actions = 0
    base = 1
    for act, dim in zip(actions, self.orig_act_dims):
      new_actions = new_actions + base * act
      base *= dim

    return [new_actions]

  def convert_obs_to_list(self, obs):
    if len(self.obs_dims) == 1:
      return [obs]
    else:
      return list(obs)

  def convert_action_to_gym(self, action):
    if len(action) == 1:
      return action[0]
    else:
      return list(action)
    if ((not self.combine_actions or len(self.orig_act_dims) == 1) and
        (len(self.act_dims) == 1 or
         (self.discretize_actions and len(self._act_dims) == 1))):
      return action[0]
    else:
      return list(action)

  def initial_obs(self, batch_size):
    batched = batch_size is not None
    batch_size = batch_size or 1

    obs = []
    for dim, typ in self.obs_dims_and_types:
      if typ == spaces.discrete:
        obs.append(np.zeros(batch_size))
      elif typ == spaces.box:
        obs.append(np.zeros([batch_size, dim]))

    if batched:
      return obs
    else:
      return zip(*obs)[0]

  def initial_act(self, batch_size=None):
    batched = batch_size is not None
    batch_size = batch_size or 1

    act = []
    for dim, typ in self.act_dims_and_types:
      if typ == spaces.discrete:
        act.append(-np.ones(batch_size))
      elif typ == spaces.box:
        act.append(-np.ones([batch_size, dim]))

    if batched:
      return act
    else:
      return zip(*act)[0]

  def is_discrete(self, typ):
    return typ == spaces.discrete

  def is_box(self, typ):
    return typ == spaces.box