File size: 5,542 Bytes
97b6013
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
# Copyright 2017 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

import numpy as np

# the number of attention input to each module
_module_input_num = {
    '_key_find': 0,
    '_key_filter': 1,
    '_val_desc': 1}
_module_output_type = {
    '_key_find': 'att',
    '_key_filter': 'att',
    '_val_desc': 'ans'
}

INVALID_EXPR = 'INVALID_EXPR'


class Assembler:

  def __init__(self, config):
    # read the module list, and record the index of each module and <eos>
    self.module_names = config.module_names
    # find the index of <eos>
    for n_s in range(len(self.module_names)):
      if self.module_names[n_s] == '<eos>':
        self.EOS_idx = n_s
        break
    # build a dictionary from module name to token index
    self.name2idx_dict = {
        name: n_s
        for n_s, name in enumerate(self.module_names)
    }

  def module_list2tokens(self, module_list, max_len=None):
    layout_tokens = [self.name2idx_dict[name] for name in module_list]
    if max_len is not None:
      if len(module_list) >= max_len:
        raise ValueError('Not enough time steps to add <eos>')
      layout_tokens += [self.EOS_idx] * (max_len - len(module_list))
    return layout_tokens

  def _layout_tokens2str(self, layout_tokens):
    return ' '.join([self.module_names[idx] for idx in layout_tokens])

  def _invalid_expr(self, layout_tokens, error_str):
    return {
        'module': INVALID_EXPR,
        'expr_str': self._layout_tokens2str(layout_tokens),
        'error': error_str
    }

  def _assemble_layout_tokens(self, layout_tokens, batch_idx):
    # Every module takes a time_idx as the index from LSTM hidden states
    # (even if it doesn't need it, like _and), and different arity of
    # attention inputs. The output type can be either attention or answer
    #
    # The final assembled expression for each instance is as follows:
    # expr_type :=
    #    {'module': '_find',        'output_type': 'att', 'time_idx': idx}
    #  | {'module': '_relocate',   'output_type': 'att', 'time_idx': idx,
    #     'inputs_0': <expr_type>}
    #  | {'module': '_and',         'output_type': 'att', 'time_idx': idx,
    #     'inputs_0': <expr_type>,  'inputs_1': <expr_type>)}
    #  | {'module': '_describe',      'output_type': 'ans', 'time_idx': idx,
    #     'inputs_0': <expr_type>}
    #  | {'module': INVALID_EXPR, 'expr_str': '...', 'error': '...',
    #     'assembly_loss': <float32>} (for invalid expressions)
    #

    # A valid layout must contain <eos>. Assembly fails if it doesn't.
    if not np.any(layout_tokens == self.EOS_idx):
      return self._invalid_expr(layout_tokens, 'cannot find <eos>')

    # Decoding Reverse Polish Notation with a stack
    decoding_stack = []
    for t in range(len(layout_tokens)):
      # decode a module/operation
      module_idx = layout_tokens[t]
      if module_idx == self.EOS_idx:
        break
      module_name = self.module_names[module_idx]
      expr = {
          'module': module_name,
          'output_type': _module_output_type[module_name],
          'time_idx': t,
          'batch_idx': batch_idx
      }

      input_num = _module_input_num[module_name]
      # Check if there are enough input in the stack
      if len(decoding_stack) < input_num:
        # Invalid expression. Not enough input.
        return self._invalid_expr(layout_tokens,
                                  'not enough input for ' + module_name)

      # Get the input from stack
      for n_input in range(input_num - 1, -1, -1):
        stack_top = decoding_stack.pop()
        if stack_top['output_type'] != 'att':
          # Invalid expression. Input must be attention
          return self._invalid_expr(layout_tokens,
                                    'input incompatible for ' + module_name)
        expr['input_%d' % n_input] = stack_top

      decoding_stack.append(expr)

    # After decoding the reverse polish expression, there should be exactly
    # one expression in the stack
    if len(decoding_stack) != 1:
      return self._invalid_expr(
          layout_tokens,
          'final stack size not equal to 1 (%d remains)' % len(decoding_stack))

    result = decoding_stack[0]
    # The result type should be answer, not attention
    if result['output_type'] != 'ans':
      return self._invalid_expr(layout_tokens,
                                'result type must be ans, not att')
    return result

  def assemble(self, layout_tokens_batch):
    # layout_tokens_batch is a numpy array with shape [max_dec_len, batch_size],
    # containing module tokens and <eos>, in Reverse Polish Notation.
    _, batch_size = layout_tokens_batch.shape
    expr_list = [
        self._assemble_layout_tokens(layout_tokens_batch[:, batch_i], batch_i)
        for batch_i in range(batch_size)
    ]
    expr_validity = np.array(
        [expr['module'] != INVALID_EXPR for expr in expr_list], np.bool)
    return expr_list, expr_validity