|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Common flags for importing hyperparameters.""" |
|
|
|
from __future__ import absolute_import |
|
from __future__ import division |
|
|
|
from __future__ import print_function |
|
|
|
from absl import flags |
|
from official.utils.flags import core as flags_core |
|
|
|
FLAGS = flags.FLAGS |
|
|
|
|
|
def define_gin_flags(): |
|
"""Define common gin configurable flags.""" |
|
flags.DEFINE_multi_string('gin_file', None, |
|
'List of paths to the config files.') |
|
flags.DEFINE_multi_string( |
|
'gin_param', None, 'Newline separated list of Gin parameter bindings.') |
|
|
|
|
|
def define_common_hparams_flags(): |
|
"""Define the common flags across models.""" |
|
|
|
flags.DEFINE_string( |
|
'model_dir', |
|
default=None, |
|
help=('The directory where the model and training/evaluation summaries' |
|
'are stored.')) |
|
|
|
flags.DEFINE_integer( |
|
'train_batch_size', default=None, help='Batch size for training.') |
|
|
|
flags.DEFINE_integer( |
|
'eval_batch_size', default=None, help='Batch size for evaluation.') |
|
|
|
flags.DEFINE_string( |
|
'precision', |
|
default=None, |
|
help=('Precision to use; one of: {bfloat16, float32}')) |
|
|
|
flags.DEFINE_string( |
|
'config_file', |
|
default=None, |
|
help=('A YAML file which specifies overrides. Note that this file can be ' |
|
'used as an override template to override the default parameters ' |
|
'specified in Python. If the same parameter is specified in both ' |
|
'`--config_file` and `--params_override`, the one in ' |
|
'`--params_override` will be used finally.')) |
|
|
|
flags.DEFINE_string( |
|
'params_override', |
|
default=None, |
|
help=('a YAML/JSON string or a YAML file which specifies additional ' |
|
'overrides over the default parameters and those specified in ' |
|
'`--config_file`. Note that this is supposed to be used only to ' |
|
'override the model parameters, but not the parameters like TPU ' |
|
'specific flags. One canonical use case of `--config_file` and ' |
|
'`--params_override` is users first define a template config file ' |
|
'using `--config_file`, then use `--params_override` to adjust the ' |
|
'minimal set of tuning parameters, for example setting up different' |
|
' `train_batch_size`. ' |
|
'The final override order of parameters: default_model_params --> ' |
|
'params from config_file --> params in params_override.' |
|
'See also the help message of `--config_file`.')) |
|
flags.DEFINE_integer('save_checkpoint_freq', None, |
|
'Number of steps to save checkpoint.') |
|
|
|
|
|
def initialize_common_flags(): |
|
"""Define the common flags across models.""" |
|
define_common_hparams_flags() |
|
|
|
flags_core.define_device(tpu=True) |
|
flags_core.define_base( |
|
num_gpu=True, model_dir=False, data_dir=False, batch_size=False) |
|
flags_core.define_distribution(worker_hosts=True, task_index=True) |
|
flags_core.define_performance(all_reduce_alg=True, num_packs=True) |
|
|
|
|
|
FLAGS.num_gpus = 0 |
|
|
|
flags.DEFINE_string( |
|
'strategy_type', 'mirrored', 'Type of distribute strategy.' |
|
'One of mirrored, tpu and multiworker.') |
|
|
|
|
|
def strategy_flags_dict(): |
|
"""Returns TPU and/or GPU related flags in a dictionary.""" |
|
return { |
|
'distribution_strategy': FLAGS.strategy_type, |
|
|
|
'tpu': FLAGS.tpu, |
|
|
|
'all_reduce_alg': FLAGS.all_reduce_alg, |
|
'worker_hosts': FLAGS.worker_hosts, |
|
'task_index': FLAGS.task_index, |
|
|
|
'num_gpus': FLAGS.num_gpus, |
|
'num_packs': FLAGS.num_packs, |
|
} |
|
|
|
|
|
def hparam_flags_dict(): |
|
"""Returns model params related flags in a dictionary.""" |
|
return { |
|
'data_dir': FLAGS.data_dir, |
|
'model_dir': FLAGS.model_dir, |
|
'train_batch_size': FLAGS.train_batch_size, |
|
'eval_batch_size': FLAGS.eval_batch_size, |
|
'precision': FLAGS.precision, |
|
'config_file': FLAGS.config_file, |
|
'params_override': FLAGS.params_override, |
|
} |
|
|