|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Tests for Model Helper functions.""" |
|
|
|
from __future__ import absolute_import |
|
from __future__ import division |
|
from __future__ import print_function |
|
|
|
import tensorflow as tf |
|
|
|
from official.utils.misc import model_helpers |
|
|
|
|
|
class PastStopThresholdTest(tf.test.TestCase): |
|
"""Tests for past_stop_threshold.""" |
|
|
|
def setUp(self): |
|
super(PastStopThresholdTest, self).setUp() |
|
tf.compat.v1.disable_eager_execution() |
|
|
|
def test_past_stop_threshold(self): |
|
"""Tests for normal operating conditions.""" |
|
self.assertTrue(model_helpers.past_stop_threshold(0.54, 1)) |
|
self.assertTrue(model_helpers.past_stop_threshold(54, 100)) |
|
self.assertFalse(model_helpers.past_stop_threshold(0.54, 0.1)) |
|
self.assertFalse(model_helpers.past_stop_threshold(-0.54, -1.5)) |
|
self.assertTrue(model_helpers.past_stop_threshold(-0.54, 0)) |
|
self.assertTrue(model_helpers.past_stop_threshold(0, 0)) |
|
self.assertTrue(model_helpers.past_stop_threshold(0.54, 0.54)) |
|
|
|
def test_past_stop_threshold_none_false(self): |
|
"""Tests that check None returns false.""" |
|
self.assertFalse(model_helpers.past_stop_threshold(None, -1.5)) |
|
self.assertFalse(model_helpers.past_stop_threshold(None, None)) |
|
self.assertFalse(model_helpers.past_stop_threshold(None, 1.5)) |
|
|
|
self.assertTrue(model_helpers.past_stop_threshold(0, 1.5)) |
|
|
|
def test_past_stop_threshold_not_number(self): |
|
"""Tests for error conditions.""" |
|
with self.assertRaises(ValueError): |
|
model_helpers.past_stop_threshold("str", 1) |
|
|
|
with self.assertRaises(ValueError): |
|
model_helpers.past_stop_threshold("str", tf.constant(5)) |
|
|
|
with self.assertRaises(ValueError): |
|
model_helpers.past_stop_threshold("str", "another") |
|
|
|
with self.assertRaises(ValueError): |
|
model_helpers.past_stop_threshold(0, None) |
|
|
|
with self.assertRaises(ValueError): |
|
model_helpers.past_stop_threshold(0.7, "str") |
|
|
|
with self.assertRaises(ValueError): |
|
model_helpers.past_stop_threshold(tf.constant(4), None) |
|
|
|
|
|
class SyntheticDataTest(tf.test.TestCase): |
|
"""Tests for generate_synthetic_data.""" |
|
|
|
def test_generate_synethetic_data(self): |
|
input_element, label_element = tf.compat.v1.data.make_one_shot_iterator( |
|
model_helpers.generate_synthetic_data(input_shape=tf.TensorShape([5]), |
|
input_value=123, |
|
input_dtype=tf.float32, |
|
label_shape=tf.TensorShape([]), |
|
label_value=456, |
|
label_dtype=tf.int32)).get_next() |
|
|
|
with self.session() as sess: |
|
for n in range(5): |
|
inp, lab = sess.run((input_element, label_element)) |
|
self.assertAllClose(inp, [123., 123., 123., 123., 123.]) |
|
self.assertEquals(lab, 456) |
|
|
|
def test_generate_only_input_data(self): |
|
d = model_helpers.generate_synthetic_data( |
|
input_shape=tf.TensorShape([4]), |
|
input_value=43.5, |
|
input_dtype=tf.float32) |
|
|
|
element = tf.compat.v1.data.make_one_shot_iterator(d).get_next() |
|
self.assertFalse(isinstance(element, tuple)) |
|
|
|
with self.session() as sess: |
|
inp = sess.run(element) |
|
self.assertAllClose(inp, [43.5, 43.5, 43.5, 43.5]) |
|
|
|
def test_generate_nested_data(self): |
|
d = model_helpers.generate_synthetic_data( |
|
input_shape={'a': tf.TensorShape([2]), |
|
'b': {'c': tf.TensorShape([3]), 'd': tf.TensorShape([])}}, |
|
input_value=1.1) |
|
|
|
element = tf.compat.v1.data.make_one_shot_iterator(d).get_next() |
|
self.assertIn('a', element) |
|
self.assertIn('b', element) |
|
self.assertEquals(len(element['b']), 2) |
|
self.assertIn('c', element['b']) |
|
self.assertIn('d', element['b']) |
|
self.assertNotIn('c', element) |
|
|
|
with self.session() as sess: |
|
inp = sess.run(element) |
|
self.assertAllClose(inp['a'], [1.1, 1.1]) |
|
self.assertAllClose(inp['b']['c'], [1.1, 1.1, 1.1]) |
|
self.assertAllClose(inp['b']['d'], 1.1) |
|
|
|
|
|
if __name__ == "__main__": |
|
tf.test.main() |
|
|