|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Learning rate utilities for vision tasks.""" |
|
from __future__ import absolute_import |
|
from __future__ import division |
|
from __future__ import print_function |
|
|
|
from typing import Any, List, Mapping |
|
|
|
import numpy as np |
|
import tensorflow as tf |
|
|
|
BASE_LEARNING_RATE = 0.1 |
|
|
|
|
|
class WarmupDecaySchedule(tf.keras.optimizers.schedules.LearningRateSchedule): |
|
"""A wrapper for LearningRateSchedule that includes warmup steps.""" |
|
|
|
def __init__( |
|
self, |
|
lr_schedule: tf.keras.optimizers.schedules.LearningRateSchedule, |
|
warmup_steps: int): |
|
"""Add warmup decay to a learning rate schedule. |
|
|
|
Args: |
|
lr_schedule: base learning rate scheduler |
|
warmup_steps: number of warmup steps |
|
|
|
""" |
|
super(WarmupDecaySchedule, self).__init__() |
|
self._lr_schedule = lr_schedule |
|
self._warmup_steps = warmup_steps |
|
|
|
def __call__(self, step: int): |
|
lr = self._lr_schedule(step) |
|
if self._warmup_steps: |
|
initial_learning_rate = tf.convert_to_tensor( |
|
self._lr_schedule.initial_learning_rate, name="initial_learning_rate") |
|
dtype = initial_learning_rate.dtype |
|
global_step_recomp = tf.cast(step, dtype) |
|
warmup_steps = tf.cast(self._warmup_steps, dtype) |
|
warmup_lr = initial_learning_rate * global_step_recomp / warmup_steps |
|
lr = tf.cond(global_step_recomp < warmup_steps, |
|
lambda: warmup_lr, |
|
lambda: lr) |
|
return lr |
|
|
|
def get_config(self) -> Mapping[str, Any]: |
|
config = self._lr_schedule.get_config() |
|
config.update({ |
|
"warmup_steps": self._warmup_steps, |
|
}) |
|
return config |
|
|
|
|
|
|
|
|
|
class PiecewiseConstantDecayWithWarmup( |
|
tf.keras.optimizers.schedules.LearningRateSchedule): |
|
"""Piecewise constant decay with warmup schedule.""" |
|
|
|
def __init__(self, |
|
batch_size: int, |
|
epoch_size: int, |
|
warmup_epochs: int, |
|
boundaries: List[int], |
|
multipliers: List[float]): |
|
"""Piecewise constant decay with warmup. |
|
|
|
Args: |
|
batch_size: The training batch size used in the experiment. |
|
epoch_size: The size of an epoch, or the number of examples in an epoch. |
|
warmup_epochs: The number of warmup epochs to apply. |
|
boundaries: The list of floats with strictly increasing entries. |
|
multipliers: The list of multipliers/learning rates to use for the |
|
piecewise portion. The length must be 1 less than that of boundaries. |
|
|
|
""" |
|
super(PiecewiseConstantDecayWithWarmup, self).__init__() |
|
if len(boundaries) != len(multipliers) - 1: |
|
raise ValueError("The length of boundaries must be 1 less than the " |
|
"length of multipliers") |
|
|
|
base_lr_batch_size = 256 |
|
steps_per_epoch = epoch_size // batch_size |
|
|
|
self._rescaled_lr = BASE_LEARNING_RATE * batch_size / base_lr_batch_size |
|
self._step_boundaries = [float(steps_per_epoch) * x for x in boundaries] |
|
self._lr_values = [self._rescaled_lr * m for m in multipliers] |
|
self._warmup_steps = warmup_epochs * steps_per_epoch |
|
|
|
def __call__(self, step: int): |
|
"""Compute learning rate at given step.""" |
|
def warmup_lr(): |
|
return self._rescaled_lr * ( |
|
step / tf.cast(self._warmup_steps, tf.float32)) |
|
def piecewise_lr(): |
|
return tf.compat.v1.train.piecewise_constant( |
|
tf.cast(step, tf.float32), self._step_boundaries, self._lr_values) |
|
return tf.cond(step < self._warmup_steps, warmup_lr, piecewise_lr) |
|
|
|
def get_config(self) -> Mapping[str, Any]: |
|
return { |
|
"rescaled_lr": self._rescaled_lr, |
|
"step_boundaries": self._step_boundaries, |
|
"lr_values": self._lr_values, |
|
"warmup_steps": self._warmup_steps, |
|
} |
|
|
|
|
|
class CosineDecayWithWarmup(tf.keras.optimizers.schedules.LearningRateSchedule): |
|
"""Class to generate learning rate tensor.""" |
|
|
|
def __init__(self, batch_size: int, total_steps: int, warmup_steps: int): |
|
"""Creates the consine learning rate tensor with linear warmup. |
|
|
|
Args: |
|
batch_size: The training batch size used in the experiment. |
|
total_steps: Total training steps. |
|
warmup_steps: Steps for the warm up period. |
|
""" |
|
super(CosineDecayWithWarmup, self).__init__() |
|
base_lr_batch_size = 256 |
|
self._total_steps = total_steps |
|
self._init_learning_rate = BASE_LEARNING_RATE * batch_size / base_lr_batch_size |
|
self._warmup_steps = warmup_steps |
|
|
|
def __call__(self, global_step: int): |
|
global_step = tf.cast(global_step, dtype=tf.float32) |
|
warmup_steps = self._warmup_steps |
|
init_lr = self._init_learning_rate |
|
total_steps = self._total_steps |
|
|
|
linear_warmup = global_step / warmup_steps * init_lr |
|
|
|
cosine_learning_rate = init_lr * (tf.cos(np.pi * |
|
(global_step - warmup_steps) / |
|
(total_steps - warmup_steps)) + |
|
1.0) / 2.0 |
|
|
|
learning_rate = tf.where(global_step < warmup_steps, linear_warmup, |
|
cosine_learning_rate) |
|
return learning_rate |
|
|
|
def get_config(self): |
|
return { |
|
"total_steps": self._total_steps, |
|
"warmup_learning_rate": self._warmup_learning_rate, |
|
"warmup_steps": self._warmup_steps, |
|
"init_learning_rate": self._init_learning_rate, |
|
} |
|
|