|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Converts ADE20K data to TFRecord file format with Example protos.""" |
|
|
|
from __future__ import absolute_import |
|
from __future__ import division |
|
from __future__ import print_function |
|
import math |
|
import os |
|
import random |
|
import sys |
|
import build_data |
|
from six.moves import range |
|
import tensorflow as tf |
|
|
|
FLAGS = tf.app.flags.FLAGS |
|
|
|
tf.app.flags.DEFINE_string( |
|
'train_image_folder', |
|
'./ADE20K/ADEChallengeData2016/images/training', |
|
'Folder containing trainng images') |
|
tf.app.flags.DEFINE_string( |
|
'train_image_label_folder', |
|
'./ADE20K/ADEChallengeData2016/annotations/training', |
|
'Folder containing annotations for trainng images') |
|
|
|
tf.app.flags.DEFINE_string( |
|
'val_image_folder', |
|
'./ADE20K/ADEChallengeData2016/images/validation', |
|
'Folder containing validation images') |
|
|
|
tf.app.flags.DEFINE_string( |
|
'val_image_label_folder', |
|
'./ADE20K/ADEChallengeData2016/annotations/validation', |
|
'Folder containing annotations for validation') |
|
|
|
tf.app.flags.DEFINE_string( |
|
'output_dir', './ADE20K/tfrecord', |
|
'Path to save converted tfrecord of Tensorflow example') |
|
|
|
_NUM_SHARDS = 4 |
|
|
|
|
|
def _convert_dataset(dataset_split, dataset_dir, dataset_label_dir): |
|
"""Converts the ADE20k dataset into into tfrecord format. |
|
|
|
Args: |
|
dataset_split: Dataset split (e.g., train, val). |
|
dataset_dir: Dir in which the dataset locates. |
|
dataset_label_dir: Dir in which the annotations locates. |
|
|
|
Raises: |
|
RuntimeError: If loaded image and label have different shape. |
|
""" |
|
|
|
img_names = tf.gfile.Glob(os.path.join(dataset_dir, '*.jpg')) |
|
random.shuffle(img_names) |
|
seg_names = [] |
|
for f in img_names: |
|
|
|
basename = os.path.basename(f).split('.')[0] |
|
|
|
seg = os.path.join(dataset_label_dir, basename+'.png') |
|
seg_names.append(seg) |
|
|
|
num_images = len(img_names) |
|
num_per_shard = int(math.ceil(num_images / _NUM_SHARDS)) |
|
|
|
image_reader = build_data.ImageReader('jpeg', channels=3) |
|
label_reader = build_data.ImageReader('png', channels=1) |
|
|
|
for shard_id in range(_NUM_SHARDS): |
|
output_filename = os.path.join( |
|
FLAGS.output_dir, |
|
'%s-%05d-of-%05d.tfrecord' % (dataset_split, shard_id, _NUM_SHARDS)) |
|
with tf.python_io.TFRecordWriter(output_filename) as tfrecord_writer: |
|
start_idx = shard_id * num_per_shard |
|
end_idx = min((shard_id + 1) * num_per_shard, num_images) |
|
for i in range(start_idx, end_idx): |
|
sys.stdout.write('\r>> Converting image %d/%d shard %d' % ( |
|
i + 1, num_images, shard_id)) |
|
sys.stdout.flush() |
|
|
|
image_filename = img_names[i] |
|
image_data = tf.gfile.FastGFile(image_filename, 'rb').read() |
|
height, width = image_reader.read_image_dims(image_data) |
|
|
|
seg_filename = seg_names[i] |
|
seg_data = tf.gfile.FastGFile(seg_filename, 'rb').read() |
|
seg_height, seg_width = label_reader.read_image_dims(seg_data) |
|
if height != seg_height or width != seg_width: |
|
raise RuntimeError('Shape mismatched between image and label.') |
|
|
|
example = build_data.image_seg_to_tfexample( |
|
image_data, img_names[i], height, width, seg_data) |
|
tfrecord_writer.write(example.SerializeToString()) |
|
sys.stdout.write('\n') |
|
sys.stdout.flush() |
|
|
|
|
|
def main(unused_argv): |
|
tf.gfile.MakeDirs(FLAGS.output_dir) |
|
_convert_dataset( |
|
'train', FLAGS.train_image_folder, FLAGS.train_image_label_folder) |
|
_convert_dataset('val', FLAGS.val_image_folder, FLAGS.val_image_label_folder) |
|
|
|
|
|
if __name__ == '__main__': |
|
tf.app.run() |
|
|