|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Tests for Parsing Covering metric.""" |
|
|
|
from __future__ import absolute_import |
|
from __future__ import division |
|
from __future__ import print_function |
|
|
|
|
|
|
|
from absl.testing import absltest |
|
import numpy as np |
|
|
|
from deeplab.evaluation import parsing_covering |
|
from deeplab.evaluation import test_utils |
|
|
|
|
|
|
|
_CLASS_COLOR_MAP = { |
|
(0, 0, 0): 0, |
|
(0, 0, 255): 1, |
|
(255, 0, 0): 2, |
|
(0, 255, 0): 3, |
|
(255, 0, 255): 4, |
|
(0, 255, 255): 5, |
|
(255, 255, 0): 6, |
|
} |
|
|
|
|
|
class CoveringConveringTest(absltest.TestCase): |
|
|
|
def test_perfect_match(self): |
|
categories = np.zeros([6, 6], np.uint16) |
|
instances = np.array([ |
|
[2, 2, 2, 2, 2, 2], |
|
[2, 4, 4, 4, 4, 2], |
|
[2, 4, 4, 4, 4, 2], |
|
[2, 4, 4, 4, 4, 2], |
|
[2, 4, 4, 2, 2, 2], |
|
[2, 4, 2, 2, 2, 2], |
|
], |
|
dtype=np.uint16) |
|
|
|
pc = parsing_covering.ParsingCovering( |
|
num_categories=3, |
|
ignored_label=2, |
|
max_instances_per_category=2, |
|
offset=16, |
|
normalize_by_image_size=False) |
|
pc.compare_and_accumulate(categories, instances, categories, instances) |
|
np.testing.assert_array_equal(pc.weighted_iou_per_class, [0.0, 21.0, 0.0]) |
|
np.testing.assert_array_equal(pc.gt_area_per_class, [0.0, 21.0, 0.0]) |
|
np.testing.assert_array_equal(pc.result_per_category(), [0.0, 1.0, 0.0]) |
|
self.assertEqual(pc.result(), 1.0) |
|
|
|
def test_totally_wrong(self): |
|
categories = np.zeros([6, 6], np.uint16) |
|
gt_instances = np.array([ |
|
[0, 0, 0, 0, 0, 0], |
|
[0, 1, 0, 0, 1, 0], |
|
[0, 1, 1, 1, 1, 0], |
|
[0, 1, 1, 1, 1, 0], |
|
[0, 0, 0, 0, 0, 0], |
|
[0, 0, 0, 0, 0, 0], |
|
], |
|
dtype=np.uint16) |
|
pred_instances = 1 - gt_instances |
|
|
|
pc = parsing_covering.ParsingCovering( |
|
num_categories=2, |
|
ignored_label=0, |
|
max_instances_per_category=1, |
|
offset=16, |
|
normalize_by_image_size=False) |
|
pc.compare_and_accumulate(categories, gt_instances, categories, |
|
pred_instances) |
|
np.testing.assert_array_equal(pc.weighted_iou_per_class, [0.0, 0.0]) |
|
np.testing.assert_array_equal(pc.gt_area_per_class, [0.0, 10.0]) |
|
np.testing.assert_array_equal(pc.result_per_category(), [0.0, 0.0]) |
|
self.assertEqual(pc.result(), 0.0) |
|
|
|
def test_matches_expected(self): |
|
pred_classes = test_utils.read_segmentation_with_rgb_color_map( |
|
'team_pred_class.png', _CLASS_COLOR_MAP) |
|
pred_instances = test_utils.read_test_image( |
|
'team_pred_instance.png', mode='L') |
|
|
|
instance_class_map = { |
|
0: 0, |
|
47: 1, |
|
97: 1, |
|
133: 1, |
|
150: 1, |
|
174: 1, |
|
198: 2, |
|
215: 1, |
|
244: 1, |
|
255: 1, |
|
} |
|
gt_instances, gt_classes = test_utils.panoptic_segmentation_with_class_map( |
|
'team_gt_instance.png', instance_class_map) |
|
|
|
pc = parsing_covering.ParsingCovering( |
|
num_categories=3, |
|
ignored_label=0, |
|
max_instances_per_category=256, |
|
offset=256 * 256, |
|
normalize_by_image_size=False) |
|
pc.compare_and_accumulate(gt_classes, gt_instances, pred_classes, |
|
pred_instances) |
|
np.testing.assert_array_almost_equal( |
|
pc.weighted_iou_per_class, [0.0, 39864.14634, 3136], decimal=4) |
|
np.testing.assert_array_equal(pc.gt_area_per_class, [0.0, 56870, 5800]) |
|
np.testing.assert_array_almost_equal( |
|
pc.result_per_category(), [0.0, 0.70097, 0.54069], decimal=4) |
|
self.assertAlmostEqual(pc.result(), 0.6208296732) |
|
|
|
def test_matches_expected_normalize_by_size(self): |
|
pred_classes = test_utils.read_segmentation_with_rgb_color_map( |
|
'team_pred_class.png', _CLASS_COLOR_MAP) |
|
pred_instances = test_utils.read_test_image( |
|
'team_pred_instance.png', mode='L') |
|
|
|
instance_class_map = { |
|
0: 0, |
|
47: 1, |
|
97: 1, |
|
133: 1, |
|
150: 1, |
|
174: 1, |
|
198: 2, |
|
215: 1, |
|
244: 1, |
|
255: 1, |
|
} |
|
gt_instances, gt_classes = test_utils.panoptic_segmentation_with_class_map( |
|
'team_gt_instance.png', instance_class_map) |
|
|
|
pc = parsing_covering.ParsingCovering( |
|
num_categories=3, |
|
ignored_label=0, |
|
max_instances_per_category=256, |
|
offset=256 * 256, |
|
normalize_by_image_size=True) |
|
pc.compare_and_accumulate(gt_classes, gt_instances, pred_classes, |
|
pred_instances) |
|
np.testing.assert_array_almost_equal( |
|
pc.weighted_iou_per_class, [0.0, 0.5002088756, 0.03935002196], |
|
decimal=4) |
|
np.testing.assert_array_almost_equal( |
|
pc.gt_area_per_class, [0.0, 0.7135955832, 0.07277746408], decimal=4) |
|
|
|
|
|
np.testing.assert_array_almost_equal( |
|
pc.result_per_category(), [0.0, 0.70097, 0.54069], decimal=4) |
|
self.assertAlmostEqual(pc.result(), 0.6208296732) |
|
|
|
|
|
if __name__ == '__main__': |
|
absltest.main() |
|
|