NCTCMumbai's picture
Upload 2583 files
97b6013 verified
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Executes Keras benchmarks and accuracy tests."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import time
from absl import flags
from absl import logging
from absl.testing import flagsaver
import tensorflow as tf
from official.benchmark import benchmark_wrappers
from official.benchmark import owner_utils
from official.benchmark.perfzero_benchmark import PerfZeroBenchmark
from official.recommendation import ncf_common
from official.recommendation import ncf_keras_main
from official.utils.flags import core
FLAGS = flags.FLAGS
NCF_DATA_DIR_NAME = 'movielens_data'
NCF_TF_REGRESSION_DATA_DIR_NAME = 'gs://tf-regression/ncf/data'
class NCFKerasBenchmarkBase(PerfZeroBenchmark):
"""Base class for NCF model benchmark."""
def __init__(self, output_dir=None, default_flags=None, **kwargs):
super(NCFKerasBenchmarkBase, self).__init__(output_dir, default_flags,
**kwargs)
# Run all benchmarks with ml_perf flag.
self.default_flags['ml_perf'] = True
def _setup(self):
"""Sets up and resets flags before each test."""
logging.set_verbosity(logging.INFO)
if NCFKerasBenchmarkBase.local_flags is None:
ncf_common.define_ncf_flags()
# Loads flags to get defaults to then override. List cannot be empty.
flags.FLAGS(['foo'])
core.set_defaults(**self.default_flags)
saved_flag_values = flagsaver.save_flag_values()
NCFKerasBenchmarkBase.local_flags = saved_flag_values
else:
flagsaver.restore_flag_values(NCFKerasBenchmarkBase.local_flags)
@benchmark_wrappers.enable_runtime_flags
def _run_and_report_benchmark(self, hr_at_10_min=0, hr_at_10_max=0):
start_time_sec = time.time()
stats = ncf_keras_main.run_ncf(FLAGS)
wall_time_sec = time.time() - start_time_sec
metrics = []
metrics.append({'name': 'exp_per_second',
'value': stats['avg_exp_per_second']})
if hr_at_10_min > 0:
metrics.append({'name': 'hr_at_10',
'value': stats['eval_hit_rate'],
'min_value': hr_at_10_min,
'max_value': hr_at_10_max})
metrics.append({'name': 'train_loss',
'value': stats['loss']})
self.report_benchmark(iters=-1, wall_time=wall_time_sec, metrics=metrics)
class NCFKerasAccuracy(NCFKerasBenchmarkBase):
"""Benchmark NCF model using real data."""
def __init__(self,
output_dir=None,
root_data_dir=None,
default_flags=None,
**kwargs):
root_data_dir = root_data_dir if root_data_dir else ''
default_flags = {}
default_flags['dataset'] = 'ml-20m'
default_flags['num_gpus'] = 1
default_flags['train_epochs'] = 10
default_flags['clean'] = True
default_flags['batch_size'] = 99000
default_flags['learning_rate'] = 0.00382059
default_flags['beta1'] = 0.783529
default_flags['beta2'] = 0.909003
default_flags['epsilon'] = 1.45439e-07
default_flags['layers'] = [256, 256, 128, 64]
default_flags['num_factors'] = 64
default_flags['hr_threshold'] = 0.635
default_flags['ml_perf'] = True
default_flags['use_synthetic_data'] = False
default_flags['data_dir'] = os.path.join(root_data_dir, NCF_DATA_DIR_NAME)
super(NCFKerasAccuracy, self).__init__(
output_dir=output_dir,
default_flags=default_flags,
**kwargs)
def _run_and_report_benchmark_mlperf_like(self):
"""Run test and report results.
Note: MLPerf like tests are not tuned to hit a specific hr@10 value, but
we want it recorded.
"""
self._run_and_report_benchmark(hr_at_10_min=0.61)
def _run_and_report_benchmark(self, hr_at_10_min=0.630, hr_at_10_max=0.645):
"""Run test and report results.
Note: Target is 0.635, but some runs are below that level. Until we have
multi-run tests, we have to accept a lower target.
Args:
hr_at_10_min: Minimum acceptable hr@10 value.
hr_at_10_max: Maximum acceptable hr@10 value.
"""
super(NCFKerasAccuracy, self)._run_and_report_benchmark(
hr_at_10_min=hr_at_10_min,
hr_at_10_max=hr_at_10_max)
def _set_8_gpu_defaults(self):
FLAGS.num_gpus = 8
FLAGS.learning_rate = 0.0045
FLAGS.beta1 = 0.25
FLAGS.beta2 = 0.5
FLAGS.epsilon = 1e-8
FLAGS.train_epochs = 14
FLAGS.batch_size = 99000
FLAGS.eval_batch_size = 160000
FLAGS.train_dataset_path = os.path.join(NCF_TF_REGRESSION_DATA_DIR_NAME,
'training_cycle_*/*')
FLAGS.eval_dataset_path = os.path.join(NCF_TF_REGRESSION_DATA_DIR_NAME,
'eval_data/*')
FLAGS.input_meta_data_path = os.path.join(NCF_TF_REGRESSION_DATA_DIR_NAME,
'metadata')
FLAGS.data_dir = NCF_TF_REGRESSION_DATA_DIR_NAME
def benchmark_1_gpu_early_stop(self):
self._setup()
FLAGS.early_stopping = True
self._run_and_report_benchmark()
def benchmark_1_gpu_no_dist_strat_early_stop(self):
self._setup()
FLAGS.distribution_strategy = 'off'
FLAGS.early_stopping = True
self._run_and_report_benchmark()
def benchmark_1_gpu_no_dist_strat_run_eagerly_early_stop(self):
self._setup()
FLAGS.distribution_strategy = 'off'
FLAGS.early_stopping = True
FLAGS.run_eagerly = True
self._run_and_report_benchmark()
def benchmark_xla_1_gpu_early_stop(self):
self._setup()
FLAGS.early_stopping = True
FLAGS.enable_xla = True
self._run_and_report_benchmark()
def benchmark_1_gpu_ctl_early_stop(self):
self._setup()
FLAGS.keras_use_ctl = True
FLAGS.early_stopping = True
self._run_and_report_benchmark()
def benchmark_1_gpu_ctl_run_eagerly_early_stop(self):
self._setup()
FLAGS.keras_use_ctl = True
FLAGS.early_stopping = True
FLAGS.run_eagerly = True
self._run_and_report_benchmark()
def benchmark_xla_1_gpu_ctl_early_stop(self):
self._setup()
FLAGS.keras_use_ctl = True
FLAGS.early_stopping = True
FLAGS.enable_xla = True
self._run_and_report_benchmark()
def benchmark_2_gpus_early_stop(self):
self._setup()
FLAGS.early_stopping = True
FLAGS.num_gpus = 2
FLAGS.eval_batch_size = 160000
self._run_and_report_benchmark()
def benchmark_2_gpus_ctl_early_stop(self):
"""NCF with custom training loop. Works only in TF 2.0."""
self._setup()
FLAGS.keras_use_ctl = True
FLAGS.early_stopping = True
FLAGS.num_gpus = 2
FLAGS.eval_batch_size = 160000
self._run_and_report_benchmark()
#############################################
# Tests below with mlperf in the test name are of two types:
# 1) 1 GPU tests are based on MLPerf 0.5 and the TensorFlow pulled submission.
# 2) 8 GPU tests are based on MLPerf 0.5 and use NVIDIA's hyper parameters.
#
# The purpose of both is to get a number to compare to existing results. To do
# this the number of epochs is held constant rather than a race to a given
# accuracy. The accuracy validation is done by the "early_stop" tests.
#############################################
def benchmark_1_gpu_mlperf_like(self):
"""1 GPU using keras fit/compile."""
self._setup()
FLAGS.train_epochs = 7
self._run_and_report_benchmark_mlperf_like()
def benchmark_1_gpu_no_dist_strat_mlperf_like(self):
"""1 GPU using compile/fit without dist_strat."""
self._setup()
FLAGS.train_epochs = 7
FLAGS.distribution_strategy = 'off'
self._run_and_report_benchmark_mlperf_like()
def benchmark_1_gpu_no_dist_strat_run_eagerly_mlperf_like(self):
self._setup()
FLAGS.train_epochs = 7
FLAGS.distribution_strategy = 'off'
FLAGS.run_eagerly = True
self._run_and_report_benchmark_mlperf_like()
def benchmark_xla_1_gpu_mlperf_like(self):
"""1 GPU using compile/fit with XLA."""
self._setup()
FLAGS.train_epochs = 7
FLAGS.enable_xla = True
self._run_and_report_benchmark_mlperf_like()
def benchmark_1_gpu_ctl_mlperf_like(self):
"""1 GPU using CTL."""
self._setup()
FLAGS.keras_use_ctl = True
FLAGS.train_epochs = 7
self._run_and_report_benchmark_mlperf_like()
def benchmark_1_gpu_ctl_fp16_mlperf_like(self):
"""1 GPU using CTL and FP16."""
self._setup()
FLAGS.keras_use_ctl = True
FLAGS.train_epochs = 7
FLAGS.dtype = 'fp16'
FLAGS.loss_scale = 8192
self._run_and_report_benchmark_mlperf_like()
def benchmark_1_gpu_fp16_mlperf_like(self):
"""1 GPU using FP16."""
self._setup()
FLAGS.train_epochs = 7
FLAGS.dtype = 'fp16'
FLAGS.loss_scale = 8192
self._run_and_report_benchmark_mlperf_like()
def benchmark_1_gpu_ctl_fp16_graph_rewrite_mlperf_like(self):
"""1 GPU using CTL and FP16 graph rewrite."""
self._setup()
FLAGS.keras_use_ctl = True
FLAGS.train_epochs = 7
FLAGS.dtype = 'fp16'
FLAGS.fp16_implementation = 'graph_rewrite'
FLAGS.loss_scale = 8192
self._run_and_report_benchmark_mlperf_like()
def benchmark_1_gpu_fp16_graph_rewrite_mlperf_like(self):
"""1 GPU using FP16 graph rewrite."""
self._setup()
FLAGS.train_epochs = 7
FLAGS.dtype = 'fp16'
FLAGS.fp16_implementation = 'graph_rewrite'
FLAGS.loss_scale = 8192
self._run_and_report_benchmark_mlperf_like()
def benchmark_1_gpu_ctl_run_eagerly_mlperf_like(self):
"""1 GPU using CTL with eager and distribution strategy."""
self._setup()
FLAGS.keras_use_ctl = True
FLAGS.run_eagerly = True
FLAGS.train_epochs = 7
self._run_and_report_benchmark()
def benchmark_xla_1_gpu_ctl_mlperf_like(self):
"""1 GPU using CTL with XLA."""
self._setup()
FLAGS.keras_use_ctl = True
FLAGS.enable_xla = True
FLAGS.train_epochs = 7
self._run_and_report_benchmark_mlperf_like()
def benchmark_xla_1_gpu_fp16_mlperf_like(self):
"""1 GPU using with XLA and FP16."""
self._setup()
FLAGS.enable_xla = True
FLAGS.train_epochs = 7
FLAGS.dtype = 'fp16'
FLAGS.loss_scale = 8192
self._run_and_report_benchmark_mlperf_like()
def benchmark_xla_1_gpu_ctl_fp16_mlperf_like(self):
"""1 GPU using CTL with XLA and FP16."""
self._setup()
FLAGS.keras_use_ctl = True
FLAGS.enable_xla = True
FLAGS.train_epochs = 7
FLAGS.dtype = 'fp16'
FLAGS.loss_scale = 8192
self._run_and_report_benchmark_mlperf_like()
def benchmark_8_gpu_mlperf_like(self):
"""8 GPU using keras fit/compile."""
self._setup()
FLAGS.num_gpus = 8
FLAGS.train_epochs = 17
FLAGS.batch_size = 1048576
FLAGS.eval_batch_size = 160000
FLAGS.learning_rate = 0.0045
FLAGS.beta1 = 0.25
FLAGS.beta2 = 0.5
FLAGS.epsilon = 1e-8
self._run_and_report_benchmark_mlperf_like()
def benchmark_8_gpu_ctl_mlperf_like(self):
"""8 GPU using CTL."""
self._setup()
FLAGS.keras_use_ctl = True
FLAGS.num_gpus = 8
FLAGS.train_epochs = 17
FLAGS.batch_size = 1048576
FLAGS.eval_batch_size = 160000
FLAGS.learning_rate = 0.0045
FLAGS.beta1 = 0.25
FLAGS.beta2 = 0.5
FLAGS.epsilon = 1e-8
self._run_and_report_benchmark_mlperf_like()
def benchmark_8_gpu_tf_data_ctl_mlperf_like(self):
"""8 GPU using CTL."""
self._setup()
self._set_8_gpu_defaults()
FLAGS.keras_use_ctl = True
self._run_and_report_benchmark_mlperf_like()
def benchmark_8_gpu_tf_data_fp16_mlperf_like(self):
"""8 GPU FP16."""
self._setup()
self._set_8_gpu_defaults()
FLAGS.dtype = 'fp16'
FLAGS.loss_scale = 8192
self._run_and_report_benchmark_mlperf_like()
def benchmark_8_gpu_tf_data_ctl_fp16_mlperf_like(self):
"""8 GPU FP16 using CTL."""
self._setup()
self._set_8_gpu_defaults()
FLAGS.keras_use_ctl = True
FLAGS.dtype = 'fp16'
FLAGS.loss_scale = 8192
self._run_and_report_benchmark_mlperf_like()
def benchmark_8_gpu_tf_data_ctl_fp16_graph_rewrite_mlperf_like(self):
"""8 GPU FP16 graph rewrite using CTL."""
self._setup()
self._set_8_gpu_defaults()
FLAGS.keras_use_ctl = True
FLAGS.dtype = 'fp16'
FLAGS.fp16_implementation = 'graph_rewrite'
FLAGS.loss_scale = 8192
self._run_and_report_benchmark_mlperf_like()
class NCFKerasBenchmarkReal(NCFKerasBenchmarkBase):
"""NCF Keras throughput benchmarks."""
def __init__(self,
output_dir=None,
root_data_dir=None,
default_flags=None,
**kwargs):
root_data_dir = root_data_dir if root_data_dir else ''
default_flags = {}
default_flags['dataset'] = 'ml-20m'
default_flags['num_gpus'] = 1
default_flags['train_epochs'] = 14
default_flags['clean'] = True
default_flags['batch_size'] = 99000
default_flags['eval_batch_size'] = 160000
default_flags['learning_rate'] = 0.00382059
default_flags['beta1'] = 0.783529
default_flags['beta2'] = 0.909003
default_flags['epsilon'] = 1.45439e-07
default_flags['layers'] = [256, 256, 128, 64]
default_flags['num_factors'] = 64
default_flags['hr_threshold'] = 0.635
default_flags['ml_perf'] = True
default_flags['use_synthetic_data'] = False
default_flags['train_dataset_path'] = os.path.join(
NCF_TF_REGRESSION_DATA_DIR_NAME, 'training_cycle_*/*')
default_flags['eval_dataset_path'] = os.path.join(
NCF_TF_REGRESSION_DATA_DIR_NAME, 'eval_data/*')
default_flags['input_meta_data_path'] = os.path.join(
NCF_TF_REGRESSION_DATA_DIR_NAME, 'metadata')
default_flags['data_dir'] = NCF_TF_REGRESSION_DATA_DIR_NAME
super(NCFKerasBenchmarkReal, self).__init__(
output_dir=output_dir, default_flags=default_flags, **kwargs)
def benchmark_2x2_tpu(self):
"""2x2 TPU using CTL with distribution strategy."""
self._setup()
FLAGS.distribution_strategy = 'tpu'
FLAGS.keras_use_ctl = True
FLAGS.num_gpus = 0
FLAGS.train_epochs = 1
self._run_and_report_benchmark()
@owner_utils.Owner('tf-graph-compiler')
def benchmark_2x2_tpu_mlir(self):
"""2x2 TPU using CTL with distribution strategy using the MLIR bridge."""
self._setup()
FLAGS.distribution_strategy = 'tpu'
FLAGS.keras_use_ctl = True
FLAGS.num_gpus = 0
FLAGS.train_epochs = 1
tf.config.experimental.enable_mlir_bridge()
self._run_and_report_benchmark()
class NCFKerasSynth(NCFKerasBenchmarkBase):
"""Benchmark NCF model using synthetic data."""
def __init__(self,
output_dir=None,
default_flags=None,
**kwargs):
default_flags = {}
default_flags['dataset'] = 'ml-20m'
default_flags['num_gpus'] = 1
default_flags['train_epochs'] = 8
default_flags['batch_size'] = 99000
default_flags['eval_batch_size'] = 160000
default_flags['learning_rate'] = 0.00382059
default_flags['beta1'] = 0.783529
default_flags['beta2'] = 0.909003
default_flags['epsilon'] = 1.45439e-07
default_flags['layers'] = [256, 256, 128, 64]
default_flags['num_factors'] = 64
default_flags['hr_threshold'] = 0.635
default_flags['use_synthetic_data'] = True
super(NCFKerasSynth, self).__init__(
output_dir=output_dir,
default_flags=default_flags,
**kwargs)
def benchmark_1_gpu(self):
self._setup()
self._run_and_report_benchmark()
def benchmark_2_gpus(self):
self._setup()
FLAGS.num_gpus = 2
self._run_and_report_benchmark()
if __name__ == '__main__':
tf.test.main()