NCTCMumbai's picture
Upload 2583 files
97b6013 verified
# Lint as: python3
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Executes benchmark testing for bert pretraining."""
# pylint: disable=line-too-long
from __future__ import print_function
import time
from typing import Optional
from absl import flags
import tensorflow as tf
from official.benchmark import benchmark_wrappers
from official.benchmark import owner_utils
from official.benchmark import perfzero_benchmark
from official.nlp.nhnet import trainer
from official.utils.flags import core as flags_core
MIN_LOSS = 0.40
MAX_LOSS = 0.55
NHNET_DATA = 'gs://tf-perfzero-data/nhnet/v1/processed/train.tfrecord*'
PRETRAINED_CHECKPOINT_PATH = 'gs://cloud-tpu-checkpoints/bert/keras_bert/uncased_L-12_H-768_A-12/bert_model.ckpt'
FLAGS = flags.FLAGS
class NHNetBenchmark(perfzero_benchmark.PerfZeroBenchmark):
"""Base benchmark class for NHNet."""
def __init__(self, output_dir=None, default_flags=None, tpu=None, **kwargs):
self.default_flags = default_flags or {}
flag_methods = trainer.define_flags()
super(NHNetBenchmark, self).__init__(
output_dir=output_dir,
default_flags=default_flags,
flag_methods=flag_methods,
tpu=tpu,
**kwargs)
def _report_benchmark(self,
stats,
wall_time_sec,
max_value=None,
min_value=None):
"""Report benchmark results by writing to local protobuf file.
Args:
stats: dict returned from keras models with known entries.
wall_time_sec: the during of the benchmark execution in seconds
max_value: highest passing level.
min_value: lowest passing level.
"""
metrics = []
metrics.append({
'name': 'training_loss',
'value': stats['training_loss'],
'min_value': min_value,
'max_value': max_value
})
# These metrics are placeholders to avoid PerfZero failure.
metrics.append({
'name': 'exp_per_second',
'value': 0.0,
})
metrics.append({
'name': 'startup_time',
'value': 9999.,
})
flags_str = flags_core.get_nondefault_flags_as_str()
self.report_benchmark(
iters=-1,
wall_time=wall_time_sec,
metrics=metrics,
extras={'flags': flags_str})
class NHNetAccuracyBenchmark(NHNetBenchmark):
"""Benchmark accuracy tests for NHNet."""
def __init__(self,
output_dir: Optional[str] = None,
tpu: Optional[str] = None,
**kwargs):
default_flags = dict(
mode='train',
train_file_pattern=NHNET_DATA,
train_batch_size=1024,
model_type='nhnet',
len_title=15,
len_passage=200,
num_encoder_layers=12,
num_decoder_layers=12,
num_nhnet_articles=5,
steps_per_loop=1000,
params_override='init_from_bert2bert=false')
super(NHNetAccuracyBenchmark, self).__init__(
output_dir=output_dir, default_flags=default_flags, tpu=tpu, **kwargs)
@benchmark_wrappers.enable_runtime_flags
def _run_and_report_benchmark(self, max_value=MAX_LOSS, min_value=MIN_LOSS):
"""Runs and reports the benchmark given the provided configuration."""
start_time_sec = time.time()
stats = trainer.run()
wall_time_sec = time.time() - start_time_sec
self._report_benchmark(
stats, wall_time_sec, max_value=max_value, min_value=min_value)
@owner_utils.Owner('tf-model-garden')
def benchmark_accuracy_4x4_tpu_f32_50k_steps(self):
"""Test bert pretraining with 4x4 TPU for 50k steps."""
# This is used for accuracy test.
self._setup()
FLAGS.train_steps = 50000
FLAGS.checkpoint_interval = FLAGS.train_steps
FLAGS.distribution_strategy = 'tpu'
FLAGS.init_checkpoint = PRETRAINED_CHECKPOINT_PATH
FLAGS.model_dir = self._get_model_dir(
'benchmark_accuracy_4x4_tpu_bf32_50k_steps')
self._run_and_report_benchmark()
@owner_utils.Owner('tf-model-garden')
def benchmark_accuracy_4x4_tpu_f32_1k_steps(self):
"""Test bert pretraining with 4x4 TPU for 1k steps."""
self._setup()
FLAGS.train_steps = 1000
FLAGS.checkpoint_interval = FLAGS.train_steps
FLAGS.distribution_strategy = 'tpu'
FLAGS.model_dir = self._get_model_dir(
'benchmark_accuracy_4x4_tpu_bf32_1k_steps')
self._run_and_report_benchmark()
if __name__ == '__main__':
tf.test.main()