|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Utilities to save models.""" |
|
|
|
from __future__ import absolute_import |
|
from __future__ import division |
|
|
|
from __future__ import print_function |
|
|
|
import os |
|
|
|
from absl import logging |
|
import tensorflow as tf |
|
import typing |
|
|
|
|
|
def export_bert_model(model_export_path: typing.Text, |
|
model: tf.keras.Model, |
|
checkpoint_dir: typing.Optional[typing.Text] = None, |
|
restore_model_using_load_weights: bool = False) -> None: |
|
"""Export BERT model for serving which does not include the optimizer. |
|
|
|
Arguments: |
|
model_export_path: Path to which exported model will be saved. |
|
model: Keras model object to export. |
|
checkpoint_dir: Path from which model weights will be loaded, if |
|
specified. |
|
restore_model_using_load_weights: Whether to use checkpoint.restore() API |
|
for custom checkpoint or to use model.load_weights() API. |
|
There are 2 different ways to save checkpoints. One is using |
|
tf.train.Checkpoint and another is using Keras model.save_weights(). |
|
Custom training loop implementation uses tf.train.Checkpoint API |
|
and Keras ModelCheckpoint callback internally uses model.save_weights() |
|
API. Since these two API's cannot be used toghether, model loading logic |
|
must be take into account how model checkpoint was saved. |
|
|
|
Raises: |
|
ValueError when either model_export_path or model is not specified. |
|
""" |
|
if not model_export_path: |
|
raise ValueError('model_export_path must be specified.') |
|
if not isinstance(model, tf.keras.Model): |
|
raise ValueError('model must be a tf.keras.Model object.') |
|
|
|
if checkpoint_dir: |
|
|
|
|
|
if restore_model_using_load_weights: |
|
model_weight_path = os.path.join(checkpoint_dir, 'checkpoint') |
|
assert tf.io.gfile.exists(model_weight_path) |
|
model.load_weights(model_weight_path) |
|
|
|
|
|
else: |
|
checkpoint = tf.train.Checkpoint(model=model) |
|
|
|
|
|
latest_checkpoint_file = tf.train.latest_checkpoint(checkpoint_dir) |
|
assert latest_checkpoint_file |
|
logging.info('Checkpoint file %s found and restoring from ' |
|
'checkpoint', latest_checkpoint_file) |
|
checkpoint.restore( |
|
latest_checkpoint_file).assert_existing_objects_matched() |
|
|
|
model.save(model_export_path, include_optimizer=False, save_format='tf') |
|
|