Spaces:
Building
Building
# Lint as: python3 | |
# Copyright 2020 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ============================================================================== | |
"""Loads dataset for the BERT pretraining task.""" | |
from typing import Mapping, Optional | |
import tensorflow as tf | |
from official.core import input_reader | |
class BertPretrainDataLoader: | |
"""A class to load dataset for bert pretraining task.""" | |
def __init__(self, params): | |
"""Inits `BertPretrainDataLoader` class. | |
Args: | |
params: A `BertPretrainDataConfig` object. | |
""" | |
self._params = params | |
self._seq_length = params.seq_length | |
self._max_predictions_per_seq = params.max_predictions_per_seq | |
self._use_next_sentence_label = params.use_next_sentence_label | |
self._use_position_id = params.use_position_id | |
def _decode(self, record: tf.Tensor): | |
"""Decodes a serialized tf.Example.""" | |
name_to_features = { | |
'input_ids': | |
tf.io.FixedLenFeature([self._seq_length], tf.int64), | |
'input_mask': | |
tf.io.FixedLenFeature([self._seq_length], tf.int64), | |
'segment_ids': | |
tf.io.FixedLenFeature([self._seq_length], tf.int64), | |
'masked_lm_positions': | |
tf.io.FixedLenFeature([self._max_predictions_per_seq], tf.int64), | |
'masked_lm_ids': | |
tf.io.FixedLenFeature([self._max_predictions_per_seq], tf.int64), | |
'masked_lm_weights': | |
tf.io.FixedLenFeature([self._max_predictions_per_seq], tf.float32), | |
} | |
if self._use_next_sentence_label: | |
name_to_features['next_sentence_labels'] = tf.io.FixedLenFeature([1], | |
tf.int64) | |
if self._use_position_id: | |
name_to_features['position_ids'] = tf.io.FixedLenFeature( | |
[self._seq_length], tf.int64) | |
example = tf.io.parse_single_example(record, name_to_features) | |
# tf.Example only supports tf.int64, but the TPU only supports tf.int32. | |
# So cast all int64 to int32. | |
for name in list(example.keys()): | |
t = example[name] | |
if t.dtype == tf.int64: | |
t = tf.cast(t, tf.int32) | |
example[name] = t | |
return example | |
def _parse(self, record: Mapping[str, tf.Tensor]): | |
"""Parses raw tensors into a dict of tensors to be consumed by the model.""" | |
x = { | |
'input_word_ids': record['input_ids'], | |
'input_mask': record['input_mask'], | |
'input_type_ids': record['segment_ids'], | |
'masked_lm_positions': record['masked_lm_positions'], | |
'masked_lm_ids': record['masked_lm_ids'], | |
'masked_lm_weights': record['masked_lm_weights'], | |
} | |
if self._use_next_sentence_label: | |
x['next_sentence_labels'] = record['next_sentence_labels'] | |
if self._use_position_id: | |
x['position_ids'] = record['position_ids'] | |
return x | |
def load(self, input_context: Optional[tf.distribute.InputContext] = None): | |
"""Returns a tf.dataset.Dataset.""" | |
reader = input_reader.InputReader( | |
params=self._params, | |
decoder_fn=self._decode, | |
parser_fn=self._parse) | |
return reader.read(input_context) | |