NCTCMumbai's picture
Upload 2583 files
97b6013 verified
# Lint as: python3
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Keras-based attention layer."""
# pylint: disable=g-classes-have-attributes
from __future__ import absolute_import
from __future__ import division
# from __future__ import google_type_annotations
from __future__ import print_function
import collections
import math
import string
import numpy as np
import tensorflow as tf
from official.nlp.modeling.layers import masked_softmax
EinsumDense = tf.keras.layers.experimental.EinsumDense
_CHR_IDX = string.ascii_lowercase
def _build_attention_equation(qkv_rank, attn_axes):
"""Builds einsum equations for the attention computation.
Query, key, value inputs after projection are expected to have the shape as:
(bs, <non-attention dims>, <attention dims>, num_heads, channels).
bs and <non-attention dims> are treated as <batch dims>.
The attention operations can be generalized:
(1) Query-key dot product:
(<batch dims>, <query attention dims>, num_heads, channels), (<batch dims>,
<key attention dims>, num_heads, channels) -> (<batch dims>,
num_heads, <query attention dims>, <key attention dims>)
(2) Combination:
(<batch dims>, num_heads, <query attention dims>, <key attention dims>),
(<batch dims>, <value attention dims>, num_heads, channels) -> (<batch dims>,
<query attention dims>, num_heads, channels)
Args:
qkv_rank: the rank of query, key, value tensors.
attn_axes: a list/tuple of axes, [1, rank), that will do attention.
Returns:
Einsum equations.
"""
target_notation = _CHR_IDX[:qkv_rank]
# `batch_dims` includes the head dim.
batch_dims = tuple(np.delete(range(qkv_rank), attn_axes + (qkv_rank - 1,)))
letter_offset = qkv_rank
source_notation = ""
for i in range(qkv_rank):
if i in batch_dims or i == qkv_rank - 1:
source_notation += target_notation[i]
else:
source_notation += _CHR_IDX[letter_offset]
letter_offset += 1
product_notation = "".join([target_notation[i] for i in batch_dims] +
[target_notation[i] for i in attn_axes] +
[source_notation[i] for i in attn_axes])
dot_product_equation = "%s,%s->%s" % (source_notation, target_notation,
product_notation)
attn_scores_rank = len(product_notation)
combine_equation = "%s,%s->%s" % (product_notation, source_notation,
target_notation)
return dot_product_equation, combine_equation, attn_scores_rank
def _build_proj_equation(free_dims, bound_dims, output_dims):
"""Builds an einsum equation for projections inside multi-head attention."""
input_str = ""
kernel_str = ""
output_str = ""
bias_axes = ""
letter_offset = 0
for i in range(free_dims):
char = _CHR_IDX[i + letter_offset]
input_str += char
output_str += char
letter_offset += free_dims
for i in range(bound_dims):
char = _CHR_IDX[i + letter_offset]
input_str += char
kernel_str += char
letter_offset += bound_dims
for i in range(output_dims):
char = _CHR_IDX[i + letter_offset]
kernel_str += char
output_str += char
bias_axes += char
equation = "%s,%s->%s" % (input_str, kernel_str, output_str)
return equation, bias_axes, len(output_str)
def _get_output_shape(output_rank, known_last_dims):
return [None] * (output_rank - len(known_last_dims)) + list(known_last_dims)
@tf.keras.utils.register_keras_serializable(package="Text")
class MultiHeadAttention(tf.keras.layers.Layer):
"""MultiHeadAttention layer.
This is an implementation of multi-headed attention based on "Attention
is all you Need". If `query`, `key,` `value` are the same, then
this is self-attention. Each timestep in `query` attends to the
corresponding sequence in `key`, and returns a fixed-width vector.
This layer first projects `query`, `key` and `value`. These are
(effectively) a list of tensors of length `num_attention_heads`, where the
corresponding shapes are [batch_size, <query dimensions>, key_size],
[batch_size, <key/value dimensions>, key_size],
[batch_size, <key/value dimensions>, value_size].
Then, the query and key tensors are dot-producted and scaled. These are
softmaxed to obtain attention probabilities. The value tensors are then
interpolated by these probabilities, then concatenated back to a single
tensor.
Finally, the result tensor with the last dimension as value_size can take an
linear projection and return.
Examples:
Performs 1D cross-attention over two sequence inputs with an attention mask.
Returns the additional attention weights over heads.
>>> layer = MultiHeadAttention(num_heads=2, key_size=2,
... return_attention_scores=True)
>>> target = tf.keras.Input(shape=[8, 16])
>>> source = tf.keras.Input(shape=[4, 16])
>>> mask_tensor = tf.keras.Input(shape=[8, 4])
>>> output_tensor, weights = layer([target, source])
>>> print(output_tensor.shape), print(weights.shape)
(None, 8, 16) (None, 2, 8, 4)
Performs 2D self-attention over a 5D input tensor on axes 2 and 3.
>>> layer = MultiHeadAttention(num_heads=2, key_size=2, attention_axes=(2, 3))
>>> input_tensor = tf.keras.Input(shape=[5, 3, 4, 16])
>>> output_tensor = layer([input_tensor, input_tensor])
>>> print(output_tensor.shape)
(None, 5, 3, 4, 16)
Arguments:
num_heads: Number of attention heads.
key_size: Size of each attention head for query and key.
value_size: Size of each attention head for value.
dropout: Dropout probability.
use_bias: Boolean, whether the dense layers use bias vectors/matrices.
output_shape: The expected shape of an output tensor, besides the batch and
sequence dims. If not specified, projects back to the key feature dim.
attention_axes: axes over which the attention is applied. `None` means
attention over all axes, but batch, heads, and features.
return_attention_scores: bool, if `True`, returns the multi-head
attention scores as an additional output argument.
kernel_initializer: Initializer for dense layer kernels.
bias_initializer: Initializer for dense layer biases.
kernel_regularizer: Regularizer for dense layer kernels.
bias_regularizer: Regularizer for dense layer biases.
activity_regularizer: Regularizer for dense layer activity.
kernel_constraint: Constraint for dense layer kernels.
bias_constraint: Constraint for dense layer kernels.
"""
def __init__(self,
num_heads,
key_size,
value_size=None,
dropout=0.0,
use_bias=True,
output_shape=None,
attention_axes=None,
return_attention_scores=False,
kernel_initializer="glorot_uniform",
bias_initializer="zeros",
kernel_regularizer=None,
bias_regularizer=None,
activity_regularizer=None,
kernel_constraint=None,
bias_constraint=None,
**kwargs):
super(MultiHeadAttention, self).__init__(**kwargs)
self._num_heads = num_heads
self._key_size = key_size
self._value_size = value_size if value_size else key_size
self._dropout = dropout
self._use_bias = use_bias
self._output_shape = output_shape
self._return_attention_scores = return_attention_scores
self._kernel_initializer = tf.keras.initializers.get(kernel_initializer)
self._bias_initializer = tf.keras.initializers.get(bias_initializer)
self._kernel_regularizer = tf.keras.regularizers.get(kernel_regularizer)
self._bias_regularizer = tf.keras.regularizers.get(bias_regularizer)
self._kernel_constraint = tf.keras.constraints.get(kernel_constraint)
self._bias_constraint = tf.keras.constraints.get(bias_constraint)
if attention_axes is not None and not isinstance(attention_axes,
collections.abc.Sized):
self._attention_axes = (attention_axes,)
else:
self._attention_axes = attention_axes
def get_config(self):
config = {
"num_heads":
self._num_heads,
"key_size":
self._key_size,
"value_size":
self._value_size,
"dropout":
self._dropout,
"use_bias":
self._use_bias,
"output_shape":
self._output_shape,
"attention_axes":
self._attention_axes,
"return_attention_scores":
self._return_attention_scores,
"kernel_initializer":
tf.keras.initializers.serialize(self._kernel_initializer),
"bias_initializer":
tf.keras.initializers.serialize(self._bias_initializer),
"kernel_regularizer":
tf.keras.regularizers.serialize(self._kernel_regularizer),
"bias_regularizer":
tf.keras.regularizers.serialize(self._bias_regularizer),
"activity_regularizer":
tf.keras.regularizers.serialize(self._activity_regularizer),
"kernel_constraint":
tf.keras.constraints.serialize(self._kernel_constraint),
"bias_constraint":
tf.keras.constraints.serialize(self._bias_constraint)
}
base_config = super(MultiHeadAttention, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
def build(self, input_shape):
inputs_len = len(input_shape)
if inputs_len > 3 or inputs_len < 2:
raise ValueError(
"Expects inputs list of length 2 or 3, namely [query, value] or "
"[query, value, key]. "
"Given length: %d" % inputs_len)
tensor_shapes = tf.nest.map_structure(tf.TensorShape, input_shape)
query_shape = tensor_shapes[0]
value_shape = tensor_shapes[1]
key_shape = tensor_shapes[2] if inputs_len == 3 else value_shape
common_kwargs = dict(
kernel_initializer=self._kernel_initializer,
bias_initializer=self._bias_initializer,
kernel_regularizer=self._kernel_regularizer,
bias_regularizer=self._bias_regularizer,
activity_regularizer=self._activity_regularizer,
kernel_constraint=self._kernel_constraint,
bias_constraint=self._bias_constraint)
free_dims = query_shape.rank - 1
einsum_equation, bias_axes, output_rank = _build_proj_equation(
free_dims, bound_dims=1, output_dims=2)
self._query_dense = EinsumDense(
einsum_equation,
output_shape=_get_output_shape(output_rank - 1,
[self._num_heads, self._key_size]),
bias_axes=bias_axes if self._use_bias else None,
name="query",
**common_kwargs)
einsum_equation, bias_axes, output_rank = _build_proj_equation(
key_shape.rank - 1, bound_dims=1, output_dims=2)
self._key_dense = EinsumDense(
einsum_equation,
output_shape=_get_output_shape(output_rank - 1,
[self._num_heads, self._key_size]),
bias_axes=bias_axes if self._use_bias else None,
name="key",
**common_kwargs)
einsum_equation, bias_axes, output_rank = _build_proj_equation(
value_shape.rank - 1, bound_dims=1, output_dims=2)
self._value_dense = EinsumDense(
einsum_equation,
output_shape=_get_output_shape(output_rank - 1,
[self._num_heads, self._value_size]),
bias_axes=bias_axes if self._use_bias else None,
name="value",
**common_kwargs)
# Builds the attention computations for multi-head dot product attention.
# These computations could be wrapped into the keras attention layer once it
# support mult-head einsum computations.
self._build_attention(output_rank)
if self._output_shape:
if not isinstance(self._output_shape, collections.abc.Sized):
output_shape = [self._output_shape]
else:
output_shape = self._output_shape
else:
output_shape = [query_shape[-1]]
einsum_equation, bias_axes, output_rank = _build_proj_equation(
free_dims, bound_dims=2, output_dims=len(output_shape))
self._output_dense = EinsumDense(
einsum_equation,
output_shape=_get_output_shape(output_rank - 1, output_shape),
bias_axes=bias_axes if self._use_bias else None,
name="attention_output",
**common_kwargs)
super(MultiHeadAttention, self).build(input_shape)
def _build_attention(self, qkv_rank):
"""Builds multi-head dot-product attention computations.
This function builds attributes necessary for `_compute_attention` to
costomize attention computation to replace the default dot-product
attention.
Args:
qkv_rank: the rank of query, key, value tensors.
"""
if self._attention_axes is None:
self._attention_axes = tuple(range(1, qkv_rank - 2))
else:
self._attention_axes = tuple(self._attention_axes)
self._dot_product_equation, self._combine_equation, attn_scores_rank = (
_build_attention_equation(qkv_rank, attn_axes=self._attention_axes))
norm_axes = tuple(
range(attn_scores_rank - len(self._attention_axes), attn_scores_rank))
self._masked_softmax = masked_softmax.MaskedSoftmax(
mask_expansion_axes=[1], normalization_axes=norm_axes)
self._dropout_layer = tf.keras.layers.Dropout(rate=self._dropout)
def _compute_attention(self,
query_tensor,
key_tensor,
value_tensor,
attention_mask=None):
"""Applies Dot-product attention with query, key, value tensors.
This function defines the computation inside `call` with projected
multi-head Q, K, V inputs. Users can override this function for customized
attention implementation.
Args:
query_tensor: Projected query `Tensor` of shape `[B, T, N, key_size]`.
key_tensor: Projected key `Tensor` of shape `[B, T, N, key_size]`.
value_tensor: Projected value `Tensor` of shape `[B, T, N, value_size]`.
attention_mask: a boolean mask of shape `[B, T, S]`, that prevents
attention to certain positions.
Returns:
attention_output: Multi-headed outputs of attention computation.
attention_scores: Multi-headed attention weights.
"""
# Take the dot product between "query" and "key" to get the raw
# attention scores.
attention_scores = tf.einsum(self._dot_product_equation, key_tensor,
query_tensor)
attention_scores = tf.multiply(attention_scores,
1.0 / math.sqrt(float(self._key_size)))
# Normalize the attention scores to probabilities.
# `attention_scores` = [B, N, T, S]
attention_scores = self._masked_softmax(attention_scores, attention_mask)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_scores_dropout = self._dropout_layer(attention_scores)
# `context_layer` = [B, T, N, H]
attention_output = tf.einsum(self._combine_equation,
attention_scores_dropout, value_tensor)
return attention_output, attention_scores
def call(self, inputs, attention_mask=None):
"""Implements the forward pass.
Size glossary:
* Number of heads (H): the number of attention heads.
* Value size (V): the size of each value embedding per head.
* Key size (K): the size of each key embedding per head. Equally, the size
of each query embedding per head. Typically K <= V.
* Batch dimensions (B).
* Query (target) attention axes shape (T).
* Value (source) attention axes shape (S), the rank must match the target.
Args:
inputs: List of the following tensors:
* query: Query `Tensor` of shape `[B, T, dim]`.
* value: Value `Tensor` of shape `[B, S, dim]`.
* key: Optional key `Tensor` of shape `[B, S, dim]`. If not given, will
use `value` for both `key` and `value`, which is the most common case.
attention_mask: a boolean mask of shape `[B, T, S]`, that prevents
attention to certain positions.
Returns:
attention_output: The result of the computation, of shape [B, T, E],
where `T` is for target sequence shapes and `E` is the query input last
dimension if `output_shape` is `None`. Otherwise, the multi-head outputs
are project to the shape specified by `output_shape`.
attention_scores: [Optional] multi-head attention coeffients over
attention
axes.
"""
inputs_len = len(inputs)
if inputs_len > 3 or inputs_len < 2:
raise ValueError(
"Expects inputs list of length 2 or 3, namely [query, value] or "
"[query, value, key]. "
"Given length: %d" % inputs_len)
query = inputs[0]
value = inputs[1]
key = inputs[2] if inputs_len == 3 else value
# N = `num_attention_heads`
# H = `size_per_head`
# `query_tensor` = [B, T, N ,H]
query_tensor = self._query_dense(query)
# `key_tensor` = [B, S, N, H]
key_tensor = self._key_dense(key)
# `value_tensor` = [B, S, N, H]
value_tensor = self._value_dense(value)
attention_output, attention_scores = self._compute_attention(
query_tensor, key_tensor, value_tensor, attention_mask)
attention_output = self._output_dense(attention_output)
if self._return_attention_scores:
return attention_output, attention_scores
return attention_output
@tf.keras.utils.register_keras_serializable(package="Text")
class CachedAttention(MultiHeadAttention):
"""Attention layer with cache used for auto-agressive decoding.
Arguments are the same as `MultiHeadAttention` layer.
"""
def _update_cache(self, key_tensor, value_tensor, cache, decode_loop_step):
"""Updates cache states and gets full-length key/value tensors."""
# Combines cached keys and values with new keys and values.
if decode_loop_step is not None:
# TPU special case.
key_seq_dim = cache["key"].shape.as_list()[1]
indices = tf.reshape(
tf.one_hot(decode_loop_step, key_seq_dim, dtype=key_tensor.dtype),
[1, key_seq_dim, 1, 1])
key_tensor = cache["key"] + key_tensor * indices
value_seq_dim = cache["value"].shape.as_list()[1]
indices = tf.reshape(
tf.one_hot(decode_loop_step, value_seq_dim, dtype=value_tensor.dtype),
[1, value_seq_dim, 1, 1])
value_tensor = cache["value"] + value_tensor * indices
else:
key_tensor = tf.concat(
[tf.cast(cache["key"], key_tensor.dtype), key_tensor], axis=1)
value_tensor = tf.concat(
[tf.cast(cache["value"], value_tensor.dtype), value_tensor], axis=1)
# Update cache
cache["key"] = key_tensor
cache["value"] = value_tensor
return key_tensor, value_tensor
def call(self,
inputs,
attention_mask=None,
cache=None,
decode_loop_step=None):
from_tensor = inputs[0]
to_tensor = inputs[1]
# Scalar dimensions referenced here:
# B = batch size (number of sequences)
# F = `from_tensor` sequence length
# T = `to_tensor` sequence length
# N = `num_attention_heads`
# H = `size_per_head`
# `query_tensor` = [B, F, N ,H]
query_tensor = self._query_dense(from_tensor)
# `key_tensor` = [B, T, N, H]
key_tensor = self._key_dense(to_tensor)
# `value_tensor` = [B, T, N, H]
value_tensor = self._value_dense(to_tensor)
if cache:
key_tensor, value_tensor = self._update_cache(key_tensor, value_tensor,
cache, decode_loop_step)
# Take the dot product between "query" and "key" to get the raw
# attention scores.
attention_scores = tf.einsum(self._dot_product_equation, key_tensor,
query_tensor)
attention_scores = tf.multiply(attention_scores,
1.0 / math.sqrt(float(self._key_size)))
# Normalize the attention scores to probabilities.
# `attention_scores` = [B, N, F, T]
attention_scores = self._masked_softmax(attention_scores, attention_mask)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_scores = self._dropout_layer(attention_scores)
# `context_layer` = [B, F, N, H]
attention_output = tf.einsum(self._combine_equation, attention_scores,
value_tensor)
attention_output = self._output_dense(attention_output)
if self._return_attention_scores:
return attention_output, attention_scores, cache
return attention_output, cache